• Previous Article
    A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold
  • DCDS Home
  • This Issue
  • Next Article
    On the regularity of the Green current for semi-extremal endomorphisms of $ \mathbb{P}^2 $
December  2020, 40(12): 6783-6794. doi: 10.3934/dcds.2020133

The secant map applied to a real polynomial with multiple roots

1. 

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia

2. 

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Catalonia

* Corresponding author: antonio.garijo@urv.cat

Received  July 2019 Revised  September 2019 Published  February 2020

Fund Project: This work has been partially supported by MINECO-AEI grants MTM-2017-86795-C3-2-P and MTM-2017-86795-C3-3-P, the Maria de Maeztu Excellence Grant MDM-2014-0445 of the BGSMath and the AGAUR grant 2017 SGR 1374

We investigate the plane dynamical system given by the secant map applied to a polynomial $ p $ having at least one multiple root of multiplicity $ d>1 $. We prove that the local dynamics around the fixed points related to the roots of $ p $ depend on the parity of $ d $.

Citation: Antonio Garijo, Xavier Jarque. The secant map applied to a real polynomial with multiple roots. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6783-6794. doi: 10.3934/dcds.2020133
References:
[1]

E. Bedford and P. Frigge, The secant method for root finding, viewed as a dynamical system, Dolomites Res. Notes Approx., 11 (2018), 122-129.   Google Scholar

[2]

G.-I. BischiL. Gardini and C. Mira, Plane maps with denominator. I. Some generic properties, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 119-153.  doi: 10.1142/S0218127499000079.  Google Scholar

[3]

G.-I. BischiL. Gardini and C. Mira, Plane maps with denominator. Ⅱ. Noninvertible maps with simple focal points, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2253-2277.  doi: 10.1142/S021812740300793X.  Google Scholar

[4]

G.-I. BischiL. Gardini and C. Mira, Plane maps with denominator. Ⅲ. Nonsimple focal points and related bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 451-496.  doi: 10.1142/S0218127405012314.  Google Scholar

[5]

A. Garijo and X. Jarque, Global dynamics of the real secant method, Nonlinearity, 32 (2019), 4557-4578.  doi: 10.1088/1361-6544/ab2f55.  Google Scholar

show all references

References:
[1]

E. Bedford and P. Frigge, The secant method for root finding, viewed as a dynamical system, Dolomites Res. Notes Approx., 11 (2018), 122-129.   Google Scholar

[2]

G.-I. BischiL. Gardini and C. Mira, Plane maps with denominator. I. Some generic properties, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 119-153.  doi: 10.1142/S0218127499000079.  Google Scholar

[3]

G.-I. BischiL. Gardini and C. Mira, Plane maps with denominator. Ⅱ. Noninvertible maps with simple focal points, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2253-2277.  doi: 10.1142/S021812740300793X.  Google Scholar

[4]

G.-I. BischiL. Gardini and C. Mira, Plane maps with denominator. Ⅲ. Nonsimple focal points and related bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 451-496.  doi: 10.1142/S0218127405012314.  Google Scholar

[5]

A. Garijo and X. Jarque, Global dynamics of the real secant method, Nonlinearity, 32 (2019), 4557-4578.  doi: 10.1088/1361-6544/ab2f55.  Google Scholar

Figure 1.  Dynamical plane of the secant map applied to $ p(x) = (x+2)x(x-1)^d $ for several values of $ d $. We show in red (dark grey) the basin of attraction of the multiple root of $ p $ corresponding to the fixed point of the secant map located at $ (1,1) $, in green (light grey) the basin of attraction of $ (-2,-2) $ and in blue (black) the basin of attraction of $ (0,0) $. The white regions that appear in each of the pictures are in the basin of a critical point of $ p $. The range of the pictures (a), (c), (e) and (f) is [-3, 3]x[-3, 3]
Figure 2.  Dynamics of T near a simple focal point Q
[1]

Santanu Sarkar, Subhamoy Maitra. Some applications of lattice based root finding techniques. Advances in Mathematics of Communications, 2010, 4 (4) : 519-531. doi: 10.3934/amc.2010.4.519

[2]

Vincenzo Ambrosio, Giovanni Molica Bisci, Dušan Repovš. Nonlinear equations involving the square root of the Laplacian. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 151-170. doi: 10.3934/dcdss.2019011

[3]

Young Hee Geum, Young Ik Kim. Long-term orbit dynamics viewed through the yellow main component in the parameter space of a family of optimal fourth-order multiple-root finders. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3087-3109. doi: 10.3934/dcdsb.2020052

[4]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[5]

Yan Liu, Minjia Shi, Hai Q. Dinh, Songsak Sriboonchitta. Repeated-root constacyclic codes of length $ 3\ell^mp^s $. Advances in Mathematics of Communications, 2020, 14 (2) : 359-378. doi: 10.3934/amc.2020025

[6]

Partha Sharathi Dutta, Soumitro Banerjee. Period increment cascades in a discontinuous map with square-root singularity. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 961-976. doi: 10.3934/dcdsb.2010.14.961

[7]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020051

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020013

[9]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[10]

Óscar Vega-Amaya, Joaquín López-Borbón. A perturbation approach to a class of discounted approximate value iteration algorithms with borel spaces. Journal of Dynamics & Games, 2016, 3 (3) : 261-278. doi: 10.3934/jdg.2016014

[11]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[12]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[13]

Guo Ben-Yu, Wang Zhong-Qing. Modified Chebyshev rational spectral method for the whole line. Conference Publications, 2003, 2003 (Special) : 365-374. doi: 10.3934/proc.2003.2003.365

[14]

Zhong-Zhi Bai. On convergence of the inner-outer iteration method for computing PageRank. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 855-862. doi: 10.3934/naco.2012.2.855

[15]

Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033

[16]

Masaru Ikehata. On finding the surface admittance of an obstacle via the time domain enclosure method. Inverse Problems & Imaging, 2019, 13 (2) : 263-284. doi: 10.3934/ipi.2019014

[17]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020139

[18]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[19]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[20]

Ji Li, Tie Zhou. Numerical optimization algorithms for wavefront phase retrieval from multiple measurements. Inverse Problems & Imaging, 2017, 11 (4) : 721-743. doi: 10.3934/ipi.2017034

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]