A conjecture of Arnold, Kozlov and Neishtadt on the exponentially small measure of the "non-torus" set in analytic systems with two degrees of freedom is discussed.
Citation: |
[1] | V. I. Arnold, Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution, Collected Works, 1 (1965), 477-480. doi: 10.1007/978-3-642-01742-1_31. |
[2] | V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006. |
[3] | L. Biasco and L. Chierchia, On the measure of Lagrangian invariant tori in nearly–integrable mechanical systems, Rend. Lincei Mat. Appl., 26 (2015), 423-432. doi: 10.4171/RLM/713. |
[4] | L. Biasco and L. Chierchia, KAM Theory for secondary tori, arXiv: 1702.06480v1 [math.DS]. |
[5] | L. Biasco and L. Chierchia, Explicit estimates on the measure of primary KAM tori, Ann. Mat. Pura Appl. (4), 197 (2018), 261-281. doi: 10.1007/s10231-017-0678-8. |
[6] | L. Biasco and L. Chierchia, On the topology of nearly–integrable Hamiltonians at simple resonances., To appear in Nonlinearity, 2020. arXiv: 1907.09434 [math.DS] |
[7] | L. Biasco and L. Chierchia, Exponentially small measure of the non–torus set in 2 degrees of freedom, Work in progress. |
[8] | P. A. M. Dirac, The adiabatic invariance of the quantum integrals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 107 (1925), 725-734. doi: 10.1098/rspa.1925.0052. |
[9] | M. Guzzo, L. Chierchia and G. Benettin, The steep Nekhoroshev Theorem, Commun. Math. Phys., 342 (2016), 569-601. doi: 10.1007/s00220-015-2555-x. |
[10] | B.R. Hunt, T. Sauer and J.A. Yorke, Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 217-238. doi: 10.1090/S0273-0979-1992-00328-2. |
[11] | B. R. Hunt and V. Y. Kaloshin, Prevalence, chapter 2, Handbook in Dynamical Systems, edited by H. Broer, F. Takens, B. Hasselblatt, 3 (2010), 43–87. |
[12] | A. G. Medvedev, A. I. Neishtadt and D. V. Treschev, Lagrangian tori near resonances of near–integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130. doi: 10.1088/0951-7715/28/7/2105. |
[13] | A. I. Neishtadt, On passage through resonances in the two-frequency problem, Sov. Phys., Dokl., 20 (1975), 189-191. |
[14] | A. I. Neishtadt, Averaging, passage through resonances, and capture into resonance in two–frequency systems, Russian Math. Surveys, 69 (2014), 771-843. doi: 10.4213/rm9603. |
[15] | N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly- integrable Hamiltonian systems I, Math. Surveys, 32 (1977), 1-65. |
[16] | J. Pöschel, Nekhoroshev estimates for quasi–convex Hamiltonian systems, Math. Z., 213 (1993), 187-216. doi: 10.1007/BF03025718. |