October  2020, 40(12): 6635-6648. doi: 10.3934/dcds.2020134

On the measure of KAM tori in two degrees of freedom

Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San L. Murialdo 1 - 00146 Roma, Italy

Received  August 2019 Revised  November 2019 Published  February 2020

A conjecture of Arnold, Kozlov and Neishtadt on the exponentially small measure of the "non-torus" set in analytic systems with two degrees of freedom is discussed.

Citation: Luca Biasco, Luigi Chierchia. On the measure of KAM tori in two degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6635-6648. doi: 10.3934/dcds.2020134
References:
[1]

V. I. Arnold, Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution, Collected Works, 1 (1965), 477-480.  doi: 10.1007/978-3-642-01742-1_31.  Google Scholar

[2]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006.  Google Scholar

[3]

L. Biasco and L. Chierchia, On the measure of Lagrangian invariant tori in nearly–integrable mechanical systems, Rend. Lincei Mat. Appl., 26 (2015), 423-432.  doi: 10.4171/RLM/713.  Google Scholar

[4]

L. Biasco and L. Chierchia, KAM Theory for secondary tori, arXiv: 1702.06480v1 [math.DS]. Google Scholar

[5]

L. Biasco and L. Chierchia, Explicit estimates on the measure of primary KAM tori, Ann. Mat. Pura Appl. (4), 197 (2018), 261-281.  doi: 10.1007/s10231-017-0678-8.  Google Scholar

[6]

L. Biasco and L. Chierchia, On the topology of nearly–integrable Hamiltonians at simple resonances., To appear in Nonlinearity, 2020. arXiv: 1907.09434 [math.DS] Google Scholar

[7]

L. Biasco and L. Chierchia, Exponentially small measure of the non–torus set in 2 degrees of freedom, Work in progress. Google Scholar

[8]

P. A. M. Dirac, The adiabatic invariance of the quantum integrals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 107 (1925), 725-734.  doi: 10.1098/rspa.1925.0052.  Google Scholar

[9]

M. GuzzoL. Chierchia and G. Benettin, The steep Nekhoroshev Theorem, Commun. Math. Phys., 342 (2016), 569-601.  doi: 10.1007/s00220-015-2555-x.  Google Scholar

[10]

B.R. HuntT. Sauer and J.A. Yorke, Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 217-238.  doi: 10.1090/S0273-0979-1992-00328-2.  Google Scholar

[11]

B. R. Hunt and V. Y. Kaloshin, Prevalence, chapter 2, Handbook in Dynamical Systems, edited by H. Broer, F. Takens, B. Hasselblatt, 3 (2010), 43–87. Google Scholar

[12]

A. G. MedvedevA. I. Neishtadt and D. V. Treschev, Lagrangian tori near resonances of near–integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130.  doi: 10.1088/0951-7715/28/7/2105.  Google Scholar

[13]

A. I. Neishtadt, On passage through resonances in the two-frequency problem, Sov. Phys., Dokl., 20 (1975), 189-191.   Google Scholar

[14]

A. I. Neishtadt, Averaging, passage through resonances, and capture into resonance in two–frequency systems, Russian Math. Surveys, 69 (2014), 771-843.  doi: 10.4213/rm9603.  Google Scholar

[15]

N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly- integrable Hamiltonian systems I, Math. Surveys, 32 (1977), 1-65.   Google Scholar

[16]

J. Pöschel, Nekhoroshev estimates for quasi–convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.  doi: 10.1007/BF03025718.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Conditions for the applicability, and estimate of the error, of an averaging method for systems which pass through states of resonance in the course of their evolution, Collected Works, 1 (1965), 477-480.  doi: 10.1007/978-3-642-01742-1_31.  Google Scholar

[2]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Springer-Verlag, Berlin, 2006.  Google Scholar

[3]

L. Biasco and L. Chierchia, On the measure of Lagrangian invariant tori in nearly–integrable mechanical systems, Rend. Lincei Mat. Appl., 26 (2015), 423-432.  doi: 10.4171/RLM/713.  Google Scholar

[4]

L. Biasco and L. Chierchia, KAM Theory for secondary tori, arXiv: 1702.06480v1 [math.DS]. Google Scholar

[5]

L. Biasco and L. Chierchia, Explicit estimates on the measure of primary KAM tori, Ann. Mat. Pura Appl. (4), 197 (2018), 261-281.  doi: 10.1007/s10231-017-0678-8.  Google Scholar

[6]

L. Biasco and L. Chierchia, On the topology of nearly–integrable Hamiltonians at simple resonances., To appear in Nonlinearity, 2020. arXiv: 1907.09434 [math.DS] Google Scholar

[7]

L. Biasco and L. Chierchia, Exponentially small measure of the non–torus set in 2 degrees of freedom, Work in progress. Google Scholar

[8]

P. A. M. Dirac, The adiabatic invariance of the quantum integrals, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 107 (1925), 725-734.  doi: 10.1098/rspa.1925.0052.  Google Scholar

[9]

M. GuzzoL. Chierchia and G. Benettin, The steep Nekhoroshev Theorem, Commun. Math. Phys., 342 (2016), 569-601.  doi: 10.1007/s00220-015-2555-x.  Google Scholar

[10]

B.R. HuntT. Sauer and J.A. Yorke, Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 217-238.  doi: 10.1090/S0273-0979-1992-00328-2.  Google Scholar

[11]

B. R. Hunt and V. Y. Kaloshin, Prevalence, chapter 2, Handbook in Dynamical Systems, edited by H. Broer, F. Takens, B. Hasselblatt, 3 (2010), 43–87. Google Scholar

[12]

A. G. MedvedevA. I. Neishtadt and D. V. Treschev, Lagrangian tori near resonances of near–integrable Hamiltonian systems, Nonlinearity, 28 (2015), 2105-2130.  doi: 10.1088/0951-7715/28/7/2105.  Google Scholar

[13]

A. I. Neishtadt, On passage through resonances in the two-frequency problem, Sov. Phys., Dokl., 20 (1975), 189-191.   Google Scholar

[14]

A. I. Neishtadt, Averaging, passage through resonances, and capture into resonance in two–frequency systems, Russian Math. Surveys, 69 (2014), 771-843.  doi: 10.4213/rm9603.  Google Scholar

[15]

N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly- integrable Hamiltonian systems I, Math. Surveys, 32 (1977), 1-65.   Google Scholar

[16]

J. Pöschel, Nekhoroshev estimates for quasi–convex Hamiltonian systems, Math. Z., 213 (1993), 187-216.  doi: 10.1007/BF03025718.  Google Scholar

[1]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[4]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[7]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (100)
  • HTML views (306)
  • Cited by (1)

Other articles
by authors

[Back to Top]