\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gaussian iterative algorithm and integrated automorphism equation for random means

  • * Corresponding author: Witold Jarczyk

    * Corresponding author: Witold Jarczyk
Abstract Full Text(HTML) Related Papers Cited by
  • Gauss-type iterates for random means are considered and their limit behaviour is studied. Among others the invariance of the limit with respect to the given random mean-type mapping $ {\bf{M}} $ is established under some relatively weak assumptions. The algorithm is applied to prove the existence and uniqueness of solutions $ \varphi $ of the equation

    $ \varphi({\bf x}) = \int_{\Omega}\varphi\left({\bf{M}}({\bf x},\omega)\right)dP(\omega) $

    in the class of (deterministic) means in $ p $ variables.

    Mathematics Subject Classification: Primary: 26A18, 37E05, 39B12; Secondary: 26E60, 60F17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Baron and W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math., 67 (2004), 140-153.  doi: 10.1007/s00010-003-2717-3.
    [2] K. Baron and R. Kapica, A uniqueness-type problem for linear iterative equations, Analysis (Munich), 29 (2009), 95-101. 
    [3] K. Baron and M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math., 37 (1977), 263-269.  doi: 10.4064/cm-37-2-263-269.
    [4] K. Baron and J. Morawiec, Lipschitzian solutions to linear iterative equations revisited, Aequationes Math., 91 (2017), 161-167.  doi: 10.1007/s00010-016-0455-6.
    [5] L. V. Bogachev, G. Derfel and S. A. Molchanov, Analysis of the archetypal functional equation in the non-critical case, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 10th AIMS Conference. Suppl., 2015 (2015), 132–141. doi: 10.3934/proc.2015.0132.
    [6] L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescalling, Proc. A., 471 (2015), 20150351, 19 pp. doi: 10.1098/rspa.2015.0351.
    [7] G. Choquet and J. Deny, Sur l'équation de convolution $\mu = \mu \ast s$, C. R. Acad. Sci. Paris, 250 (1960), 799-801. 
    [8] G. A. Derfel, A probabilistic method for studying a class of functional-differential equations, Ukrainian Math. J., 41 (1990), 1137-1141.  doi: 10.1007/BF01057249.
    [9] Ph. Diamond, A stochastic functional equation, Aequationes Math., 15 (1977), 225-233.  doi: 10.1007/BF01835652.
    [10] C. F. Gauss, Werke, Göttingen, 1876.
    [11] C. F. Gauss and H. Geppert, Bestimmung der Anziehung eines elliptischen Ringes: Nachlass zur Teorie des arithmetisch-geometrischen Mittels und der Modulfunktion, Engelmann, Leipzig, 1927.
    [12] J. Jarczyk, Parametrized means and limit properties of their Gaussian iterations, Appl. Math. Comput., 261 (2015), 81-89.  doi: 10.1016/j.amc.2015.03.085.
    [13] J. Jarczyk and W. Jarczyk, Invariance of means, Aequationes Math., 92 (2018), 801-872.  doi: 10.1007/s00010-018-0564-5.
    [14] R. Kapica and J. Morawiec, Inhomogeneous refinement equations with random affine maps, J. Difference Equ. Appl., 21 (2015), 1200–1211. doi: 10.1080/10236198.2015.1065823.
    [15] J. L. Lagrange, Sur une nouvelle Méthode de Calcul Intégrale pour différentielles affectées d'un radical carre, Mem. Acad. R. Sci. Turin II, 2 (1784/1785), 252-312. 
    [16] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math., 57 (1999), 87-107.  doi: 10.1007/s000100050072.
    [17] J. Matkowski, Iterations of mean-type mappings and invariant means, European Conference on Iteration Theory (Muszyna-Z{\l}ockie, 1998), Ann. Math. Sil., 13 (1999), 211-226. 
    [18] C. Radhakrishna Rao and D. N. Shanbhag, Choquet-Deny Type Functional Equations with Applications to Stochastic Models, John Wiley & Sons, Chichester, 1994.
    [19] M. Sudzik, On a functional equation related to a problem of G. Derfel, Aequationes Math., 93 (2019), 137-148.  doi: 10.1007/s00010-018-0600-5.
  • 加载中
SHARE

Article Metrics

HTML views(708) PDF downloads(233) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return