October  2020, 40(12): 6837-6844. doi: 10.3934/dcds.2020135

Gaussian iterative algorithm and integrated automorphism equation for random means

1. 

Institute of Mathematics, University of Zielona Góra, Szafrana 4a, PL-65-516 Zielona Góra, Poland

2. 

Institute of Mathematics and Informatics, The John Paul II Catholic University of Lublin, Konstantynów 1h, PL-20-708 Lublin, Poland

* Corresponding author: Witold Jarczyk

Received  August 2019 Revised  November 2019 Published  February 2020

Gauss-type iterates for random means are considered and their limit behaviour is studied. Among others the invariance of the limit with respect to the given random mean-type mapping
$ {\bf{M}} $
is established under some relatively weak assumptions. The algorithm is applied to prove the existence and uniqueness of solutions
$ \varphi $
of the equation
$ \varphi({\bf x}) = \int_{\Omega}\varphi\left({\bf{M}}({\bf x},\omega)\right)dP(\omega) $
in the class of (deterministic) means in
$ p $
variables.
Citation: Justyna Jarczyk, Witold Jarczyk. Gaussian iterative algorithm and integrated automorphism equation for random means. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6837-6844. doi: 10.3934/dcds.2020135
References:
[1]

K. Baron and W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math., 67 (2004), 140-153.  doi: 10.1007/s00010-003-2717-3.  Google Scholar

[2]

K. Baron and R. Kapica, A uniqueness-type problem for linear iterative equations, Analysis (Munich), 29 (2009), 95-101.   Google Scholar

[3]

K. Baron and M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math., 37 (1977), 263-269.  doi: 10.4064/cm-37-2-263-269.  Google Scholar

[4]

K. Baron and J. Morawiec, Lipschitzian solutions to linear iterative equations revisited, Aequationes Math., 91 (2017), 161-167.  doi: 10.1007/s00010-016-0455-6.  Google Scholar

[5]

L. V. Bogachev, G. Derfel and S. A. Molchanov, Analysis of the archetypal functional equation in the non-critical case, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 10th AIMS Conference. Suppl., 2015 (2015), 132–141. doi: 10.3934/proc.2015.0132.  Google Scholar

[6]

L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescalling, Proc. A., 471 (2015), 20150351, 19 pp. doi: 10.1098/rspa.2015.0351.  Google Scholar

[7]

G. Choquet and J. Deny, Sur l'équation de convolution $\mu = \mu \ast s$, C. R. Acad. Sci. Paris, 250 (1960), 799-801.   Google Scholar

[8]

G. A. Derfel, A probabilistic method for studying a class of functional-differential equations, Ukrainian Math. J., 41 (1990), 1137-1141.  doi: 10.1007/BF01057249.  Google Scholar

[9]

Ph. Diamond, A stochastic functional equation, Aequationes Math., 15 (1977), 225-233.  doi: 10.1007/BF01835652.  Google Scholar

[10]

C. F. Gauss, Werke, Göttingen, 1876. Google Scholar

[11]

C. F. Gauss and H. Geppert, Bestimmung der Anziehung eines elliptischen Ringes: Nachlass zur Teorie des arithmetisch-geometrischen Mittels und der Modulfunktion, Engelmann, Leipzig, 1927. Google Scholar

[12]

J. Jarczyk, Parametrized means and limit properties of their Gaussian iterations, Appl. Math. Comput., 261 (2015), 81-89.  doi: 10.1016/j.amc.2015.03.085.  Google Scholar

[13]

J. Jarczyk and W. Jarczyk, Invariance of means, Aequationes Math., 92 (2018), 801-872.  doi: 10.1007/s00010-018-0564-5.  Google Scholar

[14]

R. Kapica and J. Morawiec, Inhomogeneous refinement equations with random affine maps, J. Difference Equ. Appl., 21 (2015), 1200–1211. doi: 10.1080/10236198.2015.1065823.  Google Scholar

[15]

J. L. Lagrange, Sur une nouvelle Méthode de Calcul Intégrale pour différentielles affectées d'un radical carre, Mem. Acad. R. Sci. Turin II, 2 (1784/1785), 252-312.   Google Scholar

[16]

J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math., 57 (1999), 87-107.  doi: 10.1007/s000100050072.  Google Scholar

[17]

J. Matkowski, Iterations of mean-type mappings and invariant means, European Conference on Iteration Theory (Muszyna-Z{\l}ockie, 1998), Ann. Math. Sil., 13 (1999), 211-226.   Google Scholar

[18]

C. Radhakrishna Rao and D. N. Shanbhag, Choquet-Deny Type Functional Equations with Applications to Stochastic Models, John Wiley & Sons, Chichester, 1994.  Google Scholar

[19]

M. Sudzik, On a functional equation related to a problem of G. Derfel, Aequationes Math., 93 (2019), 137-148.  doi: 10.1007/s00010-018-0600-5.  Google Scholar

show all references

References:
[1]

K. Baron and W. Jarczyk, Random-valued functions and iterative functional equations, Aequationes Math., 67 (2004), 140-153.  doi: 10.1007/s00010-003-2717-3.  Google Scholar

[2]

K. Baron and R. Kapica, A uniqueness-type problem for linear iterative equations, Analysis (Munich), 29 (2009), 95-101.   Google Scholar

[3]

K. Baron and M. Kuczma, Iteration of random-valued functions on the unit interval, Colloq. Math., 37 (1977), 263-269.  doi: 10.4064/cm-37-2-263-269.  Google Scholar

[4]

K. Baron and J. Morawiec, Lipschitzian solutions to linear iterative equations revisited, Aequationes Math., 91 (2017), 161-167.  doi: 10.1007/s00010-016-0455-6.  Google Scholar

[5]

L. V. Bogachev, G. Derfel and S. A. Molchanov, Analysis of the archetypal functional equation in the non-critical case, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 10th AIMS Conference. Suppl., 2015 (2015), 132–141. doi: 10.3934/proc.2015.0132.  Google Scholar

[6]

L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescalling, Proc. A., 471 (2015), 20150351, 19 pp. doi: 10.1098/rspa.2015.0351.  Google Scholar

[7]

G. Choquet and J. Deny, Sur l'équation de convolution $\mu = \mu \ast s$, C. R. Acad. Sci. Paris, 250 (1960), 799-801.   Google Scholar

[8]

G. A. Derfel, A probabilistic method for studying a class of functional-differential equations, Ukrainian Math. J., 41 (1990), 1137-1141.  doi: 10.1007/BF01057249.  Google Scholar

[9]

Ph. Diamond, A stochastic functional equation, Aequationes Math., 15 (1977), 225-233.  doi: 10.1007/BF01835652.  Google Scholar

[10]

C. F. Gauss, Werke, Göttingen, 1876. Google Scholar

[11]

C. F. Gauss and H. Geppert, Bestimmung der Anziehung eines elliptischen Ringes: Nachlass zur Teorie des arithmetisch-geometrischen Mittels und der Modulfunktion, Engelmann, Leipzig, 1927. Google Scholar

[12]

J. Jarczyk, Parametrized means and limit properties of their Gaussian iterations, Appl. Math. Comput., 261 (2015), 81-89.  doi: 10.1016/j.amc.2015.03.085.  Google Scholar

[13]

J. Jarczyk and W. Jarczyk, Invariance of means, Aequationes Math., 92 (2018), 801-872.  doi: 10.1007/s00010-018-0564-5.  Google Scholar

[14]

R. Kapica and J. Morawiec, Inhomogeneous refinement equations with random affine maps, J. Difference Equ. Appl., 21 (2015), 1200–1211. doi: 10.1080/10236198.2015.1065823.  Google Scholar

[15]

J. L. Lagrange, Sur une nouvelle Méthode de Calcul Intégrale pour différentielles affectées d'un radical carre, Mem. Acad. R. Sci. Turin II, 2 (1784/1785), 252-312.   Google Scholar

[16]

J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math., 57 (1999), 87-107.  doi: 10.1007/s000100050072.  Google Scholar

[17]

J. Matkowski, Iterations of mean-type mappings and invariant means, European Conference on Iteration Theory (Muszyna-Z{\l}ockie, 1998), Ann. Math. Sil., 13 (1999), 211-226.   Google Scholar

[18]

C. Radhakrishna Rao and D. N. Shanbhag, Choquet-Deny Type Functional Equations with Applications to Stochastic Models, John Wiley & Sons, Chichester, 1994.  Google Scholar

[19]

M. Sudzik, On a functional equation related to a problem of G. Derfel, Aequationes Math., 93 (2019), 137-148.  doi: 10.1007/s00010-018-0600-5.  Google Scholar

[1]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[2]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[3]

Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1543-1551. doi: 10.3934/dcdss.2020087

[4]

Emmanuel Gobet, Mohamed Mrad. Convergence rate of strong approximations of compound random maps, application to SPDEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4455-4476. doi: 10.3934/dcdsb.2018171

[5]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[6]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[7]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[8]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[9]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[10]

Arvind Ayyer, Carlangelo Liverani, Mikko Stenlund. Quenched CLT for random toral automorphism. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 331-348. doi: 10.3934/dcds.2009.24.331

[11]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[12]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[13]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[14]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[15]

Tracy L. Stepien, Hal L. Smith. Existence and uniqueness of similarity solutions of a generalized heat equation arising in a model of cell migration. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3203-3216. doi: 10.3934/dcds.2015.35.3203

[16]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[17]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[18]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[19]

Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240

[20]

Pablo Álvarez-Caudevilla. Existence and multiplicity of stationary solutions for a Cahn--Hilliard-type equation in $\mathbb{R}^N$. Conference Publications, 2015, 2015 (special) : 10-18. doi: 10.3934/proc.2015.0010

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (67)
  • HTML views (278)
  • Cited by (0)

Other articles
by authors

[Back to Top]