January  2021, 41(1): 413-438. doi: 10.3934/dcds.2020136

Entire and ancient solutions of a supercritical semilinear heat equation

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

2. 

Department of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia

* Corresponding author

Received  July 2019 Published  January 2021 Early access  February 2020

Fund Project: The first author is supported in part by NSF grant DMS-1856491. The second author is supported in part by VEGA Grant 1/0347/18 and by the Slovak Research and Development Agency under the contracts No. APVV-14-0378 and APVV-18-0308

We consider the semilinear heat equation $ u_t = \Delta u+u^p $ on $ {\mathbb R}^N $. Assuming that $ N\ge 3 $ and $ p $ is greater than the Sobolev critical exponent $ (N+2)/(N-2) $, we examine entire solutions (classical solutions defined for all $ t\in {\mathbb R} $) and ancient solutions (classical solutions defined on $ (-\infty,T) $ for some $ T<\infty $). We prove a new Liouville-type theorem saying that if $ p $ is greater than the Lepin exponent $ p_L: = 1+6/(N-10) $ ($ p_L = \infty $ if $ N\le 10 $), then all positive bounded radial entire solutions are steady states. The theorem is not valid without the assumption of radial symmetry; in other ranges of supercritical $ p $ it is known not to be valid even in the class of radial solutions. Our other results include classification theorems for nonstationary entire solutions (when they exist) and ancient solutions, as well as some applications in the theory of blowup of solutions.

Citation: Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964.

[2]

H. Amann, Linear and Quasilinear Parabolic Problems I, Birkhäuser, 1995. doi: 10.1007/978-3-0348-9221-6.

[3]

T. BartschP. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. European Math. Soc., 13 (2011), 219-247.  doi: 10.4171/JEMS/250.

[4]

J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n\geq 3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 1-21. 

[5]

M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Equations Aux Dérivées Partielles et Applications, articles dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, (1998), 189–198.

[6]

C. Budd and Y.-W. Qi, The existence of bounded solutions of a semilinear elliptic equation, J. Differential Equations, 82 (1989), 207-218.  doi: 10.1016/0022-0396(89)90131-9.

[7]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.

[8]

X.-Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17-51. 

[9]

M. FilaH. Matano and P. Poláčik, Existence of $L^1$-connections between equilibria of a semilinear parabolic equation, J. Dynam. Differential Equations, 14 (2002), 463-491.  doi: 10.1023/A:1016507330323.

[10]

M. Fila and N. Mizoguchi, Multiple continuation beyond blow-up, Differential Integral Equations, 20 (2007), 671-680. 

[11]

M. Fila and A. Pulkkinen, Backward selfsimilar solutions of supercritical parabolic equations, Appl. Math. Letters, 22 (2009), 897-901.  doi: 10.1016/j.aml.2008.07.018.

[12]

M. Fila and E. Yanagida, Homoclinic and heteroclinic orbits for a semilinear parabolic equation, Tohoku Math. J., 63 (2011), 561-579.  doi: 10.2748/tmj/1325886281.

[13]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.

[14]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.

[15]

C. GuiW.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in ${ {\mathbb R}}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.  doi: 10.1002/cpa.3160450906.

[16]

M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, preprint, 1994.

[17]

L. A. Lepin, Countable spectrum of eigenfunctions of a nonlinear heat-con-duction equation with distributed parameters, Differentsial'nye Uravneniya, 24 (1988), 1226–1234; (English translation: Differential Equations, 24 (1988), 799–805).

[18]

L. A. Lepin, Self-similar solutions of a semilinear heat equation, Mat. Model., 2 (1990), 63–74 (in Russian).

[19]

H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Commun. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.

[20]

H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021.

[21]

H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025.

[22]

J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 1197-1227.  doi: 10.1017/S0308210500019351.

[23]

F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51 (1998), 139-196.  doi: 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C.

[24]

N. Mizoguchi, Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation, J. Funct. Anal., 257 (2009), 2911-2937.  doi: 10.1016/j.jfa.2009.07.009.

[25]

N. Mizoguchi, On backward self-similar blow-up solutions to a supercritical semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 821-831.  doi: 10.1017/S0308210509000444.

[26]

N. Mizoguchi, Blow-up rate of type Ⅱ and the braid group theory, Trans. Amer. Math. Soc., 363 (2011), 1419-1443.  doi: 10.1090/S0002-9947-2010-04784-1.

[27]

N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012.

[28]

Y. Naito and T. Senba, Existence of peaking solutions for semilinear heat equations with blow-up profile above the singular steady state, Nonlinear Anal., 181 (2019), 265-293.  doi: 10.1016/j.na.2018.12.001.

[29]

P. Poláčik and P. Quittner, On the multiplicity of self-similar solutions of the semilinear heat equation, Nonlinear Anal., 191 (2020), 111639, 23pp. doi: 10.1016/j.na.2019.111639.

[30]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.

[31]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅱ: Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.  doi: 10.1512/iumj.2007.56.2911.

[32]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771.  doi: 10.1007/s00208-003-0469-y.

[33]

P. Poláčik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.  doi: 10.1016/j.jde.2003.10.019.

[34]

P. Quittner, Liouville theorems for scaling invariant superlinear parabol-ic problems with gradient structure, Math. Ann., 364 (2016), 269-292.  doi: 10.1007/s00208-015-1219-7.

[35]

P. Quittner, Uniqueness of singular self-similar solutions of a semilinear parabolic equation, Differential Integral Equations, 31 (2018), 881-892. 

[36]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2007.

[37]

Y. Seki, Type Ⅱ blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent, J. Funct. Anal., 275 (2018), 3380-3456.  doi: 10.1016/j.jfa.2018.05.008.

[38]

W. C. Troy, The existence of bounded solutions of a semilinear heat equation, SIAM J. Math. Anal., 18 (1987), 332-336.  doi: 10.1137/0518026.

[39]

X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.  doi: 10.1090/S0002-9947-1993-1153016-5.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964.

[2]

H. Amann, Linear and Quasilinear Parabolic Problems I, Birkhäuser, 1995. doi: 10.1007/978-3-0348-9221-6.

[3]

T. BartschP. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. European Math. Soc., 13 (2011), 219-247.  doi: 10.4171/JEMS/250.

[4]

J. Bebernes and D. Eberly, A description of self-similar blow-up for dimensions $n\geq 3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 1-21. 

[5]

M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Equations Aux Dérivées Partielles et Applications, articles dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, (1998), 189–198.

[6]

C. Budd and Y.-W. Qi, The existence of bounded solutions of a semilinear elliptic equation, J. Differential Equations, 82 (1989), 207-218.  doi: 10.1016/0022-0396(89)90131-9.

[7]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.  doi: 10.1215/S0012-7094-91-06325-8.

[8]

X.-Y. Chen and P. Poláčik, Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball, J. Reine Angew. Math., 472 (1996), 17-51. 

[9]

M. FilaH. Matano and P. Poláčik, Existence of $L^1$-connections between equilibria of a semilinear parabolic equation, J. Dynam. Differential Equations, 14 (2002), 463-491.  doi: 10.1023/A:1016507330323.

[10]

M. Fila and N. Mizoguchi, Multiple continuation beyond blow-up, Differential Integral Equations, 20 (2007), 671-680. 

[11]

M. Fila and A. Pulkkinen, Backward selfsimilar solutions of supercritical parabolic equations, Appl. Math. Letters, 22 (2009), 897-901.  doi: 10.1016/j.aml.2008.07.018.

[12]

M. Fila and E. Yanagida, Homoclinic and heteroclinic orbits for a semilinear parabolic equation, Tohoku Math. J., 63 (2011), 561-579.  doi: 10.2748/tmj/1325886281.

[13]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.

[14]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.

[15]

C. GuiW.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in ${ {\mathbb R}}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.  doi: 10.1002/cpa.3160450906.

[16]

M. A. Herrero and J. J. L. Velázquez, A blow up result for semilinear heat equations in the supercritical case, preprint, 1994.

[17]

L. A. Lepin, Countable spectrum of eigenfunctions of a nonlinear heat-con-duction equation with distributed parameters, Differentsial'nye Uravneniya, 24 (1988), 1226–1234; (English translation: Differential Equations, 24 (1988), 799–805).

[18]

L. A. Lepin, Self-similar solutions of a semilinear heat equation, Mat. Model., 2 (1990), 63–74 (in Russian).

[19]

H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Commun. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.

[20]

H. Matano and F. Merle, Classification of type Ⅰ and type Ⅱ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 256 (2009), 992-1064.  doi: 10.1016/j.jfa.2008.05.021.

[21]

H. Matano and F. Merle, Threshold and generic type Ⅰ behaviors for a supercritical nonlinear heat equation, J. Funct. Anal., 261 (2011), 716-748.  doi: 10.1016/j.jfa.2011.02.025.

[22]

J. Matos, Convergence of blow-up solutions of nonlinear heat equations in the supercritical case, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 1197-1227.  doi: 10.1017/S0308210500019351.

[23]

F. Merle and H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math., 51 (1998), 139-196.  doi: 10.1002/(SICI)1097-0312(199802)51:2<139::AID-CPA2>3.0.CO;2-C.

[24]

N. Mizoguchi, Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation, J. Funct. Anal., 257 (2009), 2911-2937.  doi: 10.1016/j.jfa.2009.07.009.

[25]

N. Mizoguchi, On backward self-similar blow-up solutions to a supercritical semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 821-831.  doi: 10.1017/S0308210509000444.

[26]

N. Mizoguchi, Blow-up rate of type Ⅱ and the braid group theory, Trans. Amer. Math. Soc., 363 (2011), 1419-1443.  doi: 10.1090/S0002-9947-2010-04784-1.

[27]

N. Mizoguchi, Nonexistence of type Ⅱ blowup solution for a semilinear heat equation, J. Differ. Equations, 250 (2011), 26-32.  doi: 10.1016/j.jde.2010.10.012.

[28]

Y. Naito and T. Senba, Existence of peaking solutions for semilinear heat equations with blow-up profile above the singular steady state, Nonlinear Anal., 181 (2019), 265-293.  doi: 10.1016/j.na.2018.12.001.

[29]

P. Poláčik and P. Quittner, On the multiplicity of self-similar solutions of the semilinear heat equation, Nonlinear Anal., 191 (2020), 111639, 23pp. doi: 10.1016/j.na.2019.111639.

[30]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.

[31]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part Ⅱ: Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.  doi: 10.1512/iumj.2007.56.2911.

[32]

P. Poláčik and E. Yanagida, On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., 327 (2003), 745-771.  doi: 10.1007/s00208-003-0469-y.

[33]

P. Poláčik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.  doi: 10.1016/j.jde.2003.10.019.

[34]

P. Quittner, Liouville theorems for scaling invariant superlinear parabol-ic problems with gradient structure, Math. Ann., 364 (2016), 269-292.  doi: 10.1007/s00208-015-1219-7.

[35]

P. Quittner, Uniqueness of singular self-similar solutions of a semilinear parabolic equation, Differential Integral Equations, 31 (2018), 881-892. 

[36]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2007.

[37]

Y. Seki, Type Ⅱ blow-up mechanisms in a semilinear heat equation with critical Joseph-Lundgren exponent, J. Funct. Anal., 275 (2018), 3380-3456.  doi: 10.1016/j.jfa.2018.05.008.

[38]

W. C. Troy, The existence of bounded solutions of a semilinear heat equation, SIAM J. Math. Anal., 18 (1987), 332-336.  doi: 10.1137/0518026.

[39]

X. Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc., 337 (1993), 549-590.  doi: 10.1090/S0002-9947-1993-1153016-5.

[1]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[2]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[3]

Zhengce Zhang, Yanyan Li. Gradient blowup solutions of a semilinear parabolic equation with exponential source. Communications on Pure and Applied Analysis, 2013, 12 (1) : 269-280. doi: 10.3934/cpaa.2013.12.269

[4]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[5]

Yanghong Huang, Andrea Bertozzi. Asymptotics of blowup solutions for the aggregation equation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1309-1331. doi: 10.3934/dcdsb.2012.17.1309

[6]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[7]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[8]

Kaouther Ammar, Philippe Souplet. Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 665-689. doi: 10.3934/dcds.2010.26.665

[9]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[10]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[11]

Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure and Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719

[12]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[13]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[14]

Mostafa Fazly, Yuan Li. Partial regularity and Liouville theorems for stable solutions of anisotropic elliptic equations. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4185-4206. doi: 10.3934/dcds.2021033

[15]

Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187

[16]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[17]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

[18]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[19]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[20]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (397)
  • HTML views (421)
  • Cited by (2)

Other articles
by authors

[Back to Top]