doi: 10.3934/dcds.2020137

Time-fractional equations with reaction terms: Fundamental solutions and asymptotics

1. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

2. 

Dipartimento di Matematica e Fisica, Università della Campania "Luigi Vanvitelli", Viale Lincoln 5, 81100 Caserta, Italy

3. 

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

4. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

* Corresponding author: Enrico Valdinoci

Received  September 2019 Published  February 2020

We analyze the fundamental solution of a time-fractional problem, establishing existence and uniqueness in an appropriate functional space.

We also focus on the one-dimensional spatial setting in the case in which the time-fractional exponent is equal to, or larger than, $ \frac12 $. In this situation, we prove that the speed of invasion of the fundamental solution is at least "almost of square root type", namely it is larger than $ ct^\beta $ for any given $ c>0 $ and $ \beta\in\left(0,\frac12\right) $.

Citation: Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020137
References:
[1]

N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, in Contemporary Research in Elliptic PDEs and Related Topics, vol. 33 of Springer INdAM Ser., Springer, Cham, 2019, 1–105. https://link.springer.com/chapter/10.1007/978-3-030-18921-1_1.  Google Scholar

[2]

E. Affili and E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives, J. Differential Equations, 266 (2019), 4027-4060.  doi: 10.1016/j.jde.2018.09.031.  Google Scholar

[3]

V. E. Arkhincheev and E. M. Baskin, Anomalous diffusion and drift in a comb model of percolation clusters, J. Exp.Theor. Phys., 73 (1991), 161–165. http://www.jetp.ac.ru/cgi-bin/e/index/e/73/1/p161?a=list. Google Scholar

[4]

X. CabréA.-C. Coulon and J.-M. Roquejoffre, Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Math. Acad. Sci. Paris, 350 (2012), 885-890.  doi: 10.1016/j.crma.2012.10.007.  Google Scholar

[5]

X. Cabré and J.-M. Roquejoffre, The influence of fractional diffusion in {F}isher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.  doi: 10.1007/s00220-013-1682-5.  Google Scholar

[6]

M. Caputo, Linear models of dissipation whose {$Q$} is almost frequency independent. II, Fract. Calc. Appl. Anal., 11 (2008), 4–14, Reprinted from Geophys. J. R. Astr. Soc., 13 (1967), 529–539. https://www.annalsofgeophysics.eu/index.php/annals/article/viewFile/5051/5122.  Google Scholar

[7]

A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions to fractional equations, De Gruyter Studies in Mathematics 74. De Gruyter, Berlin, https://www.degruyter.com/view/product/534026. Google Scholar

[8]

W. E. Deming and C. G. Colcord, The minimum in the gamma function, Nature, 135 (1935), 917. doi: 10.1038/135917b0.  Google Scholar

[9]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type. Vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[10]

S. Dipierro and E. Valdinoci, A simple mathematical model inspired by the {P}urkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870.  doi: 10.1007/s11538-018-0437-z.  Google Scholar

[11]

S. DipierroE. Valdinoci and V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, J. Evol. Equ., 19 (2019), 435-462.  doi: 10.1007/s00028-019-00482-z.  Google Scholar

[12]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[13]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. {V}ol. III, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955, https://mathscinet.ams.org/mathscinet-getitem?mr=0066496, Based, in part, on notes left by Harry Bateman.  Google Scholar

[14]

F. Ferrari, {W}eyl and {M}archaud {D}erivatives: A forgotten history, Mathematics, 6 (2018), 6. https://www.mdpi.com/2227-7390/6/1/6. doi: 10.3390/math6010006.  Google Scholar

[15]

I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 3, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1967, Theory of differential equations, Translated from the Russian by Meinhard E. Mayer. https://www.ams.org/books/chel/379/chel379-endmatter.pdf.  Google Scholar

[16]

C. IonescuA. LopesD. CopotJ. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141-159.  doi: 10.1016/j.cnsns.2017.04.001.  Google Scholar

[17]

S. L. Kalla and B. Ross, The development of functional relations by means of fractional operators, in Fractional Calculus ({G}lasgow, 1984), vol. 138 of Res. Notes in Math., Pitman, Boston, MA, 1985, 32–43.  Google Scholar

[18]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.  Google Scholar

[19]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.  Google Scholar

[20]

J. Kemppainen and R. Zacher, Long-time behavior of non-local in time {F}okker–{P}lanck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209-235.  doi: 10.1142/S0218202519500076.  Google Scholar

[21]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160.   Google Scholar

[22]

Y. Luchko, Initial-boundary problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.  doi: 10.1016/j.jmaa.2010.08.048.  Google Scholar

[23]

F. Mainardi, On some properties of the Mittag-Leffler function {$E_\alpha(-t^\alpha)$}, completely monotone for {$t>0$} with $0 < \alpha < 1$, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2267-2278.  doi: 10.3934/dcdsb.2014.19.2267.  Google Scholar

[24]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153–192. https://arXiv.org/pdf/cond-mat/0702419.pdf.  Google Scholar

[25]

M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, vol. 43 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 2012. https://www.degruyter.com/view/product/129781.  Google Scholar

[26] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[27]

J.-M. Roquejoffre and A. Tarfulea, Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion, J. Math. Pures Appl. (9), 108 (2017), 399-424.  doi: 10.1016/j.matpur.2017.07.001.  Google Scholar

[28]

B. Ross, The Development, Theory and Application of the Gamma-function and a Profile of Fractional-calculus, ProQuest LLC, Ann Arbor, MI, 1974, Thesis (Ph.D.)–New York University. http://gateway.proquest.com.pros.lib.unimi.it/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7417154 Google Scholar

[29]

B. Ross, The development of fractional calculus 1695–1900, Historia Math., 4 (1977), 75-89.  doi: 10.1016/0315-0860(77)90039-8.  Google Scholar

[30]

B. Ross, Origins of fractional calculus and some applications, Internat. J. Math. Statist. Sci., 1 (1992), 21-34.   Google Scholar

[31]

J. Sánchez and V. Vergara, Long-time behavior of bounded global solutions to systems of nonlinear integro-differential equations, Asymptot. Anal., 85 (2013), 167-178.  doi: 10.3233/ASY-131180.  Google Scholar

[32]

J. Sánchez and V. Vergara, Long-time behavior of nonlinear integro-differential evolution equations, Nonlinear Anal., 91 (2013), 20-31.  doi: 10.1016/j.na.2013.06.006.  Google Scholar

[33]

T. SandevA. SchulzH. Kantz and A. Iomin, Heterogeneous diffusion in comb and fractal grid structures, Chaos Solitons Fractals, 114 (2018), 551-555.  doi: 10.1016/j.chaos.2017.04.041.  Google Scholar

[34]

F. Santamaria, S. Wils, E. D. Schutter and G. J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines, Eur. J. Neurosci., 34 (2011), 561–568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156966/. doi: 10.1111/j.1460-9568.2011.07785.x.  Google Scholar

[35]

H. Schiessel, C. Friedrich and A. Blumen, Applications to problems in polymer physics and rheology, in Applications of Fractional Calculus in Physics, World Sci. Publ., River Edge, NJ, 2000,331–376. doi: 10.1142/9789812817747_0007.  Google Scholar

[36]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with {C}aputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.  Google Scholar

[37]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 73 (2010), 3572-3585.  doi: 10.1016/j.na.2010.07.039.  Google Scholar

[38]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[39]

R. Wong and Y.-Q. Zhao, Exponential asymptotics of the {M}ittag-{L}effler function, Constr. Approx., 18 (2002), 355-385.  doi: 10.1007/s00365-001-0019-3.  Google Scholar

[40]

R. Zacher, Maximal regularity of type {$L_p$} for abstract parabolic {V}olterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.  Google Scholar

[41]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in {H}ilbert spaces, Funkcial. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[42]

R. Zacher, Time fractional diffusion equations: Solution concepts, regularity, and long-time behavior, in Handbook of Fractional Calculus with Applications. {V}ol. 2, De Gruyter, Berlin, 2019,159–179. https://www.degruyter.com/viewbooktoc/product/497030. doi: 10.1515/9783110571660-008.  Google Scholar

show all references

References:
[1]

N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, in Contemporary Research in Elliptic PDEs and Related Topics, vol. 33 of Springer INdAM Ser., Springer, Cham, 2019, 1–105. https://link.springer.com/chapter/10.1007/978-3-030-18921-1_1.  Google Scholar

[2]

E. Affili and E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives, J. Differential Equations, 266 (2019), 4027-4060.  doi: 10.1016/j.jde.2018.09.031.  Google Scholar

[3]

V. E. Arkhincheev and E. M. Baskin, Anomalous diffusion and drift in a comb model of percolation clusters, J. Exp.Theor. Phys., 73 (1991), 161–165. http://www.jetp.ac.ru/cgi-bin/e/index/e/73/1/p161?a=list. Google Scholar

[4]

X. CabréA.-C. Coulon and J.-M. Roquejoffre, Propagation in Fisher-KPP type equations with fractional diffusion in periodic media, C. R. Math. Acad. Sci. Paris, 350 (2012), 885-890.  doi: 10.1016/j.crma.2012.10.007.  Google Scholar

[5]

X. Cabré and J.-M. Roquejoffre, The influence of fractional diffusion in {F}isher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.  doi: 10.1007/s00220-013-1682-5.  Google Scholar

[6]

M. Caputo, Linear models of dissipation whose {$Q$} is almost frequency independent. II, Fract. Calc. Appl. Anal., 11 (2008), 4–14, Reprinted from Geophys. J. R. Astr. Soc., 13 (1967), 529–539. https://www.annalsofgeophysics.eu/index.php/annals/article/viewFile/5051/5122.  Google Scholar

[7]

A. Carbotti, S. Dipierro and E. Valdinoci, Local density of solutions to fractional equations, De Gruyter Studies in Mathematics 74. De Gruyter, Berlin, https://www.degruyter.com/view/product/534026. Google Scholar

[8]

W. E. Deming and C. G. Colcord, The minimum in the gamma function, Nature, 135 (1935), 917. doi: 10.1038/135917b0.  Google Scholar

[9]

K. Diethelm, The Analysis of Fractional Differential Equations, An application-oriented exposition using differential operators of Caputo type. Vol. 2004 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[10]

S. Dipierro and E. Valdinoci, A simple mathematical model inspired by the {P}urkinje cells: from delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870.  doi: 10.1007/s11538-018-0437-z.  Google Scholar

[11]

S. DipierroE. Valdinoci and V. Vespri, Decay estimates for evolutionary equations with fractional time-diffusion, J. Evol. Equ., 19 (2019), 435-462.  doi: 10.1007/s00028-019-00482-z.  Google Scholar

[12]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[13]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. {V}ol. III, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955, https://mathscinet.ams.org/mathscinet-getitem?mr=0066496, Based, in part, on notes left by Harry Bateman.  Google Scholar

[14]

F. Ferrari, {W}eyl and {M}archaud {D}erivatives: A forgotten history, Mathematics, 6 (2018), 6. https://www.mdpi.com/2227-7390/6/1/6. doi: 10.3390/math6010006.  Google Scholar

[15]

I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 3, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1967, Theory of differential equations, Translated from the Russian by Meinhard E. Mayer. https://www.ams.org/books/chel/379/chel379-endmatter.pdf.  Google Scholar

[16]

C. IonescuA. LopesD. CopotJ. A. T. Machado and J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141-159.  doi: 10.1016/j.cnsns.2017.04.001.  Google Scholar

[17]

S. L. Kalla and B. Ross, The development of functional relations by means of fractional operators, in Fractional Calculus ({G}lasgow, 1984), vol. 138 of Res. Notes in Math., Pitman, Boston, MA, 1985, 32–43.  Google Scholar

[18]

J. KemppainenJ. SiljanderV. Vergara and R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in $\Bbb{R}^d$, Math. Ann., 366 (2016), 941-979.  doi: 10.1007/s00208-015-1356-z.  Google Scholar

[19]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.  Google Scholar

[20]

J. Kemppainen and R. Zacher, Long-time behavior of non-local in time {F}okker–{P}lanck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209-235.  doi: 10.1142/S0218202519500076.  Google Scholar

[21]

Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141-160.   Google Scholar

[22]

Y. Luchko, Initial-boundary problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.  doi: 10.1016/j.jmaa.2010.08.048.  Google Scholar

[23]

F. Mainardi, On some properties of the Mittag-Leffler function {$E_\alpha(-t^\alpha)$}, completely monotone for {$t>0$} with $0 < \alpha < 1$, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2267-2278.  doi: 10.3934/dcdsb.2014.19.2267.  Google Scholar

[24]

F. Mainardi, Y. Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153–192. https://arXiv.org/pdf/cond-mat/0702419.pdf.  Google Scholar

[25]

M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus, vol. 43 of De Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 2012. https://www.degruyter.com/view/product/129781.  Google Scholar

[26] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999.   Google Scholar
[27]

J.-M. Roquejoffre and A. Tarfulea, Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion, J. Math. Pures Appl. (9), 108 (2017), 399-424.  doi: 10.1016/j.matpur.2017.07.001.  Google Scholar

[28]

B. Ross, The Development, Theory and Application of the Gamma-function and a Profile of Fractional-calculus, ProQuest LLC, Ann Arbor, MI, 1974, Thesis (Ph.D.)–New York University. http://gateway.proquest.com.pros.lib.unimi.it/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:7417154 Google Scholar

[29]

B. Ross, The development of fractional calculus 1695–1900, Historia Math., 4 (1977), 75-89.  doi: 10.1016/0315-0860(77)90039-8.  Google Scholar

[30]

B. Ross, Origins of fractional calculus and some applications, Internat. J. Math. Statist. Sci., 1 (1992), 21-34.   Google Scholar

[31]

J. Sánchez and V. Vergara, Long-time behavior of bounded global solutions to systems of nonlinear integro-differential equations, Asymptot. Anal., 85 (2013), 167-178.  doi: 10.3233/ASY-131180.  Google Scholar

[32]

J. Sánchez and V. Vergara, Long-time behavior of nonlinear integro-differential evolution equations, Nonlinear Anal., 91 (2013), 20-31.  doi: 10.1016/j.na.2013.06.006.  Google Scholar

[33]

T. SandevA. SchulzH. Kantz and A. Iomin, Heterogeneous diffusion in comb and fractal grid structures, Chaos Solitons Fractals, 114 (2018), 551-555.  doi: 10.1016/j.chaos.2017.04.041.  Google Scholar

[34]

F. Santamaria, S. Wils, E. D. Schutter and G. J. Augustine, The diffusional properties of dendrites depend on the density of dendritic spines, Eur. J. Neurosci., 34 (2011), 561–568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156966/. doi: 10.1111/j.1460-9568.2011.07785.x.  Google Scholar

[35]

H. Schiessel, C. Friedrich and A. Blumen, Applications to problems in polymer physics and rheology, in Applications of Fractional Calculus in Physics, World Sci. Publ., River Edge, NJ, 2000,331–376. doi: 10.1142/9789812817747_0007.  Google Scholar

[36]

E. Topp and M. Yangari, Existence and uniqueness for parabolic problems with {C}aputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.  doi: 10.1016/j.jde.2017.02.024.  Google Scholar

[37]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations, Nonlinear Anal., 73 (2010), 3572-3585.  doi: 10.1016/j.na.2010.07.039.  Google Scholar

[38]

V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM J. Math. Anal., 47 (2015), 210-239.  doi: 10.1137/130941900.  Google Scholar

[39]

R. Wong and Y.-Q. Zhao, Exponential asymptotics of the {M}ittag-{L}effler function, Constr. Approx., 18 (2002), 355-385.  doi: 10.1007/s00365-001-0019-3.  Google Scholar

[40]

R. Zacher, Maximal regularity of type {$L_p$} for abstract parabolic {V}olterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.  Google Scholar

[41]

R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in {H}ilbert spaces, Funkcial. Ekvac., 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.  Google Scholar

[42]

R. Zacher, Time fractional diffusion equations: Solution concepts, regularity, and long-time behavior, in Handbook of Fractional Calculus with Applications. {V}ol. 2, De Gruyter, Berlin, 2019,159–179. https://www.degruyter.com/viewbooktoc/product/497030. doi: 10.1515/9783110571660-008.  Google Scholar

[1]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[2]

Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895

[3]

Binjie Li, Xiaoping Xie. Regularity of solutions to time fractional diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3195-3210. doi: 10.3934/dcdsb.2018340

[4]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[5]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[6]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[7]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[8]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[9]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[10]

Philip M. J. Trevelyan. Approximating the large time asymptotic reaction zone solution for fractional order kinetics $A^n B^m$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 219-234. doi: 10.3934/dcdss.2012.5.219

[11]

Antonio Greco, Antonio Iannizzotto. Existence and convexity of solutions of the fractional heat equation. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2201-2226. doi: 10.3934/cpaa.2017109

[12]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[13]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[14]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[15]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[16]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[17]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[18]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[19]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[20]

Fahd Jarad, Thabet Abdeljawad. Variational principles in the frame of certain generalized fractional derivatives. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 695-708. doi: 10.3934/dcdss.2020038

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (183)
  • HTML views (331)
  • Cited by (0)

[Back to Top]