January  2021, 41(1): 277-296. doi: 10.3934/dcds.2020138

Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions

1. 

Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil

2. 

Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

* Corresponding author: bernhard.ruf@unimi.it

Received  October 2019 Published  February 2020

Fund Project: The three authors were partially supported by CNPq-Brazil Grants PVE 407099/2013-1

In this paper we deal with the following class of Hamiltonian elliptic systems
$ \begin{equation*} \left\{\begin{array}{lcl} -\Delta u\ = g(v)&\mbox{in}&\Omega,\\ -\Delta v\ = f(u)&\mbox{in}&\Omega,\\ u\ = \ v = \ 0&\mbox{on}&\partial\Omega, \end{array}\right. \end{equation*} $
where
$ \Omega\subset \mathbb{R}^2 $
is a bounded domain and
$ g $
is a nonlinearity with exponential growth condition. We derive the maximal growth conditions allowed for
$ f $
, proving that it can be of exponential type, double-exponential type, or completely arbitrary, depending on the conditions required for
$ g $
. Under the hypothesis of arbitrary growth conditions or else when
$ f $
has a double exponential growth, we prove existence of nontrivial solutions for the system.
Citation: João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138
References:
[1]

R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. Google Scholar

[2]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

D. Cassani and C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.  doi: 10.1007/s00526-015-0840-3.  Google Scholar

[4]

A. Cianchi, A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.  doi: 10.1512/iumj.1996.45.1958.  Google Scholar

[5]

D. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.  doi: 10.1090/S0002-9947-1994-1214781-2.  Google Scholar

[6]

D. de FigueiredoJ. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.  doi: 10.1512/iumj.2004.53.2402.  Google Scholar

[7]

D. de FigueiredoJ. M. do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar

[8]

D. de FigueiredoO. Miyagaki and B. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[9]

D. de Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.  doi: 10.1007/s00009-004-0021-7.  Google Scholar

[10]

S. Hencl, A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.  doi: 10.1016/S0022-1236(02)00172-6.  Google Scholar

[11]

J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.  doi: 10.1006/jfan.1993.1062.  Google Scholar

[12]

M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961.  Google Scholar

[13]

M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991.  Google Scholar

[14]

B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489. doi: 10.1007/3-7643-7401-2_32.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. Google Scholar

[2]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

D. Cassani and C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.  doi: 10.1007/s00526-015-0840-3.  Google Scholar

[4]

A. Cianchi, A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.  doi: 10.1512/iumj.1996.45.1958.  Google Scholar

[5]

D. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.  doi: 10.1090/S0002-9947-1994-1214781-2.  Google Scholar

[6]

D. de FigueiredoJ. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.  doi: 10.1512/iumj.2004.53.2402.  Google Scholar

[7]

D. de FigueiredoJ. M. do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar

[8]

D. de FigueiredoO. Miyagaki and B. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar

[9]

D. de Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.  doi: 10.1007/s00009-004-0021-7.  Google Scholar

[10]

S. Hencl, A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.  doi: 10.1016/S0022-1236(02)00172-6.  Google Scholar

[11]

J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.  doi: 10.1006/jfan.1993.1062.  Google Scholar

[12]

M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961.  Google Scholar

[13]

M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991.  Google Scholar

[14]

B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489. doi: 10.1007/3-7643-7401-2_32.  Google Scholar

Figure 1.  Polynomial critical hyperbola and related growth conditions
Figure 2.  The critical hyperbola in the exponential case
[1]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[2]

Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038

[3]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[4]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[5]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[6]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[7]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[8]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[9]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[10]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[11]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[12]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[14]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[15]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[16]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[17]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[18]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[19]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388

[20]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (241)
  • HTML views (418)
  • Cited by (0)

Other articles
by authors

[Back to Top]