# American Institute of Mathematical Sciences

doi: 10.3934/dcds.2020138

## Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions

 1 Departamento de Matemática, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil 2 Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

* Corresponding author: bernhard.ruf@unimi.it

Received  October 2019 Published  February 2020

Fund Project: The three authors were partially supported by CNPq-Brazil Grants PVE 407099/2013-1

In this paper we deal with the following class of Hamiltonian elliptic systems
 $\begin{equation*} \left\{\begin{array}{lcl} -\Delta u\ = g(v)&\mbox{in}&\Omega,\\ -\Delta v\ = f(u)&\mbox{in}&\Omega,\\ u\ = \ v = \ 0&\mbox{on}&\partial\Omega, \end{array}\right. \end{equation*}$
where
 $\Omega\subset \mathbb{R}^2$
is a bounded domain and
 $g$
is a nonlinearity with exponential growth condition. We derive the maximal growth conditions allowed for
 $f$
, proving that it can be of exponential type, double-exponential type, or completely arbitrary, depending on the conditions required for
 $g$
. Under the hypothesis of arbitrary growth conditions or else when
 $f$
has a double exponential growth, we prove existence of nontrivial solutions for the system.
Citation: João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020138
##### References:
 [1] R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. Google Scholar [2] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar [3] D. Cassani and C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.  doi: 10.1007/s00526-015-0840-3.  Google Scholar [4] A. Cianchi, A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.  doi: 10.1512/iumj.1996.45.1958.  Google Scholar [5] D. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.  doi: 10.1090/S0002-9947-1994-1214781-2.  Google Scholar [6] D. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.  doi: 10.1512/iumj.2004.53.2402.  Google Scholar [7] D. de Figueiredo, J. M. do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar [8] D. de Figueiredo, O. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar [9] D. de Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.  doi: 10.1007/s00009-004-0021-7.  Google Scholar [10] S. Hencl, A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.  doi: 10.1016/S0022-1236(02)00172-6.  Google Scholar [11] J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.  doi: 10.1006/jfan.1993.1062.  Google Scholar [12] M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961.  Google Scholar [13] M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991.  Google Scholar [14] B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489. doi: 10.1007/3-7643-7401-2_32.  Google Scholar

show all references

##### References:
 [1] R. Adams, Sobolev Spaces, in Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. Google Scholar [2] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar [3] D. Cassani and C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differential Equations, 54 (2015), 1673-1704.  doi: 10.1007/s00526-015-0840-3.  Google Scholar [4] A. Cianchi, A Sharp Embedding Theorem for Orlicz-Sobolev Spaces, Indiana University Mathematics Journal, 45 (1996), 39-65.  doi: 10.1512/iumj.1996.45.1958.  Google Scholar [5] D. de Figueiredo and P. Felmer, On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.  doi: 10.1090/S0002-9947-1994-1214781-2.  Google Scholar [6] D. de Figueiredo, J. M. do Ó and B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana University Mathematics Journal, 53 (2004), 1037-1053.  doi: 10.1512/iumj.2004.53.2402.  Google Scholar [7] D. de Figueiredo, J. M. do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems, J. Funct. Anal., 224 (2005), 471-496.  doi: 10.1016/j.jfa.2004.09.008.  Google Scholar [8] D. de Figueiredo, O. Miyagaki and B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.  Google Scholar [9] D. de Figueiredo and B. Ruf, Elliptic systems with nonlinearities of arbitrary growth, Mediterr. J. Math., 1 (2004), 417-431.  doi: 10.1007/s00009-004-0021-7.  Google Scholar [10] S. Hencl, A sharp form of an embedding into exponential and doube exponential spaces, J. Funct. Anal.., 204 (2003), 196-227.  doi: 10.1016/S0022-1236(02)00172-6.  Google Scholar [11] J. Hulshof and R. van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.  doi: 10.1006/jfan.1993.1062.  Google Scholar [12] M. Krasnosel'skii and Y. Rutickii, Convex functions and Orlicz Spaces, P. Noordhoff, Ltd. Groningen, Netherlands, 1961.  Google Scholar [13] M. Rao and Z. Ren, Theory of Orlicz Spaces, in Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York, 1991.  Google Scholar [14] B. Ruf, Lorentz-Sobolev spaces and nonlinear elliptic systems, in Contributions to Nonlinear Analysis, Progr. Nonlinear Differential Equations Appl., 66, Birkh user, Basel, 2006,471–489. doi: 10.1007/3-7643-7401-2_32.  Google Scholar
Polynomial critical hyperbola and related growth conditions
The critical hyperbola in the exponential case
 [1] Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 [2] Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 [3] Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 [4] Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859 [5] Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 [6] Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure & Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 [7] Lucas C. F. Ferreira, Everaldo Medeiros, Marcelo Montenegro. An elliptic system and the critical hyperbola. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1169-1182. doi: 10.3934/cpaa.2015.14.1169 [8] Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 [9] Paulo Rabelo. Elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2013-2035. doi: 10.3934/cpaa.2009.8.2013 [10] Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155 [11] Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 [12] Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110 [13] Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 [14] Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $L^p$ norms. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191 [15] Diego D. Felix, Marcelo F. Furtado, Everaldo S. Medeiros. Semilinear elliptic problems involving exponential critical growth in the half-space. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4937-4953. doi: 10.3934/cpaa.2020219 [16] Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 [17] K. Tintarev. Critical values and minimal periods for autonomous Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 389-400. doi: 10.3934/dcds.1995.1.389 [18] Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357 [19] Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $\mathbb R^{n}$. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064 [20] Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

2019 Impact Factor: 1.338

## Tools

Article outline

Figures and Tables