May  2020, 40(5): 2515-2559. doi: 10.3934/dcds.2020140

On the well-posedness and decay rates of strong solutions to a multi-dimensional non-conservative viscous compressible two-fluid system

1. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, 255049, Shandong, China

2. 

School of Mathematical Science, Qufu Normal University, Qufu, 263516, Shandong, China

3. 

Department of Mathematics and Statistics, Curtin University, Perth, 6845, WA, Australia

* Corresponding author: Fuyi Xu

Received  October 2018 Revised  July 2019 Published  March 2020

Fund Project: The first author is supported by the National Natural Science Foundation of China (11501332, 11771043, 11871302, 51976112), the Natural Science Foundation of Shandong Province (ZR2015AL007), and Young Scholars Research Fund of Shandong University of Technology

The present paper deals with the Cauchy problem of a multi-dimensional non-conservative viscous compressible two-fluid system. We first study the well-posedness of the model in spaces with critical regularity indices with respect to the scaling of the associated equations. In the functional setting as close as possible to the physical energy spaces, we prove the unique global solvability of strong solutions close to a stable equilibrium state. Furthermore, under a mild additional decay assumption involving only the low frequencies of the data, we establish the time decay rates for the constructed global solutions. The proof relies on an application of Fourier analysis to a complicated parabolic-hyperbolic system, and on a refined time-weighted inequality.

Citation: Fuyi Xu, Meiling Chi, Lishan Liu, Yonghong Wu. On the well-posedness and decay rates of strong solutions to a multi-dimensional non-conservative viscous compressible two-fluid system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2515-2559. doi: 10.3934/dcds.2020140
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. BreschB. DesjardinsJ. M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.  doi: 10.1007/s00205-009-0261-6.  Google Scholar

[3]

D. BreschX. D. Huang and J. Li, Global weak solutions to one-dimensional nonconservative viscous compressible two-phase system, Commun. Math. Phys., 309 (2012), 737-755.  doi: 10.1007/s00220-011-1379-6.  Google Scholar

[4]

D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier and M. Hillairet, Multi-fluid models including compressible fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 2927–2978.  Google Scholar

[5]

J.-Y. Chemin, Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 14. The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[6]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations., 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[7]

Q. L. ChenC. X. Miao and Z. F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[8]

H. B. CuiW. J. WangL. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512.  doi: 10.1137/15M1037792.  Google Scholar

[9]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[10]

R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.  Google Scholar

[11]

R. Danchin, Fourier analysis methods for the compressible Navier-Stokes equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 1843–1903.  Google Scholar

[12]

R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.  doi: 10.1080/03605300600910399.  Google Scholar

[13]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.  Google Scholar

[14]

S. EvjeW. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rational Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.  Google Scholar

[15] T. M. Fleet, Differentiation, Differential Equations and Differential Inequalities, Cambridge University Press, Cambridge-New York, 1980.   Google Scholar
[16]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2156-2208.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[17]

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer-Verlag, New York, 2006. doi: 10.1007/978-0-387-29187-1.  Google Scholar

[18]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Thesis, Kyoto University, Kyoto, 1983. Google Scholar

[19]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.  doi: 10.1017/S0308210500018308.  Google Scholar

[20]

N. I. Kolev, Multiphase Flow Dynamics. 1. Fundamentals, Springer-Verlag, Berlin, 2005. Google Scholar

[21]

N. I. Kolev, Multiphase Flow Dynamics. 2. Thermal and Mechanical Interactions, Springer-Verlag, Berlin, 2005.  Google Scholar

[22]

J. LaiH. Y. Wen and L. Yao, Vanishing capillarity limit of the non-conservative compressible two-fluid model, Discrete and Continuous Dynamical Sysytems Series B, 22 (2017), 1361-1392.  doi: 10.3934/dcdsb.2017066.  Google Scholar

[23]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbb{R}^{3}$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.  Google Scholar

[24]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[25]

A. Matsumura and T. Nishida, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.  Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[27]

A. Novotny and M. Pokorny, Weak solutions for some compressible multicomponent fluid models, preprint, arXiv: 1802.00798v2. Google Scholar

[28]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[29]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.  Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

D. BreschB. DesjardinsJ. M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Rational Mech. Anal., 196 (2010), 599-629.  doi: 10.1007/s00205-009-0261-6.  Google Scholar

[3]

D. BreschX. D. Huang and J. Li, Global weak solutions to one-dimensional nonconservative viscous compressible two-phase system, Commun. Math. Phys., 309 (2012), 737-755.  doi: 10.1007/s00220-011-1379-6.  Google Scholar

[4]

D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier and M. Hillairet, Multi-fluid models including compressible fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 2927–2978.  Google Scholar

[5]

J.-Y. Chemin, Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 14. The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[6]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Differential Equations., 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[7]

Q. L. ChenC. X. Miao and Z. F. Zhang, Global well-posedness for compressible Navier-Stokes equations with highly oscillating initial velocity, Comm. Pure Appl. Math., 63 (2010), 1173-1224.  doi: 10.1002/cpa.20325.  Google Scholar

[8]

H. B. CuiW. J. WangL. Yao and C. J. Zhu, Decay rates for a nonconservative compressible generic two-fluid model, SIAM J. Math. Anal., 48 (2016), 470-512.  doi: 10.1137/15M1037792.  Google Scholar

[9]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[10]

R. Danchin, On the uniqueness in critical spaces for compressible Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 12 (2005), 111-128.  doi: 10.1007/s00030-004-2032-2.  Google Scholar

[11]

R. Danchin, Fourier analysis methods for the compressible Navier-Stokes equations, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, (2018), 1843–1903.  Google Scholar

[12]

R. Danchin, Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density, Comm. Partial Differential Equations, 32 (2007), 1373-1397.  doi: 10.1080/03605300600910399.  Google Scholar

[13]

R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311-1334.  doi: 10.1017/S030821050000295X.  Google Scholar

[14]

S. EvjeW. J. Wang and H. Y. Wen, Global well-posedness and decay rates of strong solutions to a non-conservative compressible two-fluid model, Arch. Rational Mech. Anal., 221 (2016), 1285-1316.  doi: 10.1007/s00205-016-0984-0.  Google Scholar

[15] T. M. Fleet, Differentiation, Differential Equations and Differential Inequalities, Cambridge University Press, Cambridge-New York, 1980.   Google Scholar
[16]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2156-2208.  doi: 10.1080/03605302.2012.696296.  Google Scholar

[17]

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, Springer-Verlag, New York, 2006. doi: 10.1007/978-0-387-29187-1.  Google Scholar

[18]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Thesis, Kyoto University, Kyoto, 1983. Google Scholar

[19]

S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.  doi: 10.1017/S0308210500018308.  Google Scholar

[20]

N. I. Kolev, Multiphase Flow Dynamics. 1. Fundamentals, Springer-Verlag, Berlin, 2005. Google Scholar

[21]

N. I. Kolev, Multiphase Flow Dynamics. 2. Thermal and Mechanical Interactions, Springer-Verlag, Berlin, 2005.  Google Scholar

[22]

J. LaiH. Y. Wen and L. Yao, Vanishing capillarity limit of the non-conservative compressible two-fluid model, Discrete and Continuous Dynamical Sysytems Series B, 22 (2017), 1361-1392.  doi: 10.3934/dcdsb.2017066.  Google Scholar

[23]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbb{R}^{3}$, Math. Methods Appl. Sci., 34 (2011), 670-682.  doi: 10.1002/mma.1391.  Google Scholar

[24]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. 2. Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998.  Google Scholar

[25]

A. Matsumura and T. Nishida, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), 337-342.  doi: 10.3792/pjaa.55.337.  Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.  doi: 10.1215/kjm/1250522322.  Google Scholar

[27]

A. Novotny and M. Pokorny, Weak solutions for some compressible multicomponent fluid models, preprint, arXiv: 1802.00798v2. Google Scholar

[28]

G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9 (1985), 399-418.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[29]

Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.  doi: 10.14492/hokmj/1381757663.  Google Scholar

[1]

Jin Lai, Huanyao Wen, Lei Yao. Vanishing capillarity limit of the non-conservative compressible two-fluid model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1361-1392. doi: 10.3934/dcdsb.2017066

[2]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[3]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[4]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[5]

Adalet Hanachi, Haroune Houamed, Mohamed Zerguine. On the global well-posedness of the axisymmetric viscous Boussinesq system in critical Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6473-6506. doi: 10.3934/dcds.2020287

[6]

Juliana Honda Lopes, Gabriela Planas. Well-posedness for a non-isothermal flow of two viscous incompressible fluids. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2455-2477. doi: 10.3934/cpaa.2018117

[7]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[8]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28 (2) : 879-895. doi: 10.3934/era.2020046

[9]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[10]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[11]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[12]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[13]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[14]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[15]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[16]

Steinar Evje, Huanyao Wen, Lei Yao. Global solutions to a one-dimensional non-conservative two-phase model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1927-1955. doi: 10.3934/dcds.2016.36.1927

[17]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[18]

Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109

[19]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[20]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (84)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]