• Previous Article
    Characterization of minimizable Lagrangian action functionals and a dual Mather theorem
  • DCDS Home
  • This Issue
  • Next Article
    Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations
May  2020, 40(5): 2593-2613. doi: 10.3934/dcds.2020142

Two scenarios on a potential smoothness breakdown for the three-dimensional Navier–Stokes equations

Dpto. de Matemática Aplicada I, E. T. S. I. Informática, Universidad de Sevilla, Avda. Reina Mercedes, s/n, Sevilla, E-41012, Spain

* Corresponding author: Juan Vicente Gutiérrez-Santacreu

Received  December 2018 Revised  May 2019 Published  March 2020

Fund Project: JVGS was partially supported by the Spanish Grant No. PGC2018-098308-B-I00 from Ministerio de Ciencias e Innovación - Agencia Estatal de Investigación with the participation of FEDER

In this paper we construct two families of initial data being arbitrarily large under any scaling-invariant norm for which their corresponding weak solution to the three-dimensional Navier–Stokes equations become smooth on either $ [0,T_1] $ or $ [T_2,\infty) $, respectively, where $ T_1 $ and $ T_2 $ are two times prescribed previously. In particular, $ T_1 $ can be arbitrarily large and $ T_2 $ can be arbitrarily small. Therefore, a possible formation of singularities would occur after a very long or short evolution time, respectively.

We further prove that if a large part of the kinetic energy is consumed prior to the first (possible) blow-up time, then the global-in-time smoothness of the solutions follows for the two families of initial data.

Citation: Juan Vicente Gutiérrez-Santacreu. Two scenarios on a potential smoothness breakdown for the three-dimensional Navier–Stokes equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2593-2613. doi: 10.3934/dcds.2020142
References:
[1]

H. Beirão da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), 149-166.  doi: 10.1512/iumj.1987.36.36008.  Google Scholar

[2]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[3]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995.  Google Scholar

[4]

J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${ \mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[5]

J.-Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc., 362 (2010), 2859-2873.  doi: 10.1090/S0002-9947-10-04744-6.  Google Scholar

[6]

L. EscauriazaG. A. Serëgin and V. Šverák, $L_{3, \infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[7]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[8]

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.  doi: 10.24033/bsmf.2398.  Google Scholar

[9]

I. GallagherD. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 53 (2003), 1387-1424.  doi: 10.5802/aif.1983.  Google Scholar

[10]

E. Hopf, Über die aufangswertaufgabe für die hydrodynamischen Grundgliechungen, Mathematische Nachrichten, 4 (1951), 213-231.  doi: 10.1002/mana.3210040121.  Google Scholar

[11]

T. Kato, Strong $L^p$-solutions of the Navier–Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[12]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[13]

Z. Lei and F. H. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.  Google Scholar

[14]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.  Google Scholar

[15]

J. Leray, Essai sur les mouvements d'un liquide visqueux emplissant l'espace, Acta Mathematica, 63 (1934), 193-248.   Google Scholar

[16]

A. S. Makhalov and V. P. Nikolaenko, Global solvability of three-dimensional Navier-Stokes equations with uniformly high initial vorticity, Uspekhi Mat. Nauk, 58 (2003), 79-110.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[17]

J. C. Robinson and W. Sadowski, A local smoothness criterion for solutions of the 3D Navier-Stokes equations, Rend. Semin. Mat. Univ. Padova, 131 (2014), 159-178.  doi: 10.4171/RSMUP/131-9.  Google Scholar

show all references

References:
[1]

H. Beirão da Veiga, Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), 149-166.  doi: 10.1512/iumj.1987.36.36008.  Google Scholar

[2]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, J. Funct. Anal., 255 (2008), 2233-2247.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[3]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995.  Google Scholar

[4]

J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in ${ \mathbb R}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599-624.  doi: 10.1016/j.anihpc.2007.05.008.  Google Scholar

[5]

J.-Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes equations, slowly varying in one direction, Trans. Amer. Math. Soc., 362 (2010), 2859-2873.  doi: 10.1090/S0002-9947-10-04744-6.  Google Scholar

[6]

L. EscauriazaG. A. Serëgin and V. Šverák, $L_{3, \infty}$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 3-44.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[7]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[8]

I. Gallagher, Profile decomposition for solutions of the Navier-Stokes equations, Bull. Soc. Math. France, 129 (2001), 285-316.  doi: 10.24033/bsmf.2398.  Google Scholar

[9]

I. GallagherD. Iftimie and F. Planchon, Asymptotics and stability for global solutions to the Navier-Stokes equations, Ann. Inst. Fourier (Grenoble), 53 (2003), 1387-1424.  doi: 10.5802/aif.1983.  Google Scholar

[10]

E. Hopf, Über die aufangswertaufgabe für die hydrodynamischen Grundgliechungen, Mathematische Nachrichten, 4 (1951), 213-231.  doi: 10.1002/mana.3210040121.  Google Scholar

[11]

T. Kato, Strong $L^p$-solutions of the Navier–Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[12]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[13]

Z. Lei and F. H. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math., 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.  Google Scholar

[14]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. doi: 10.1201/9781420035674.  Google Scholar

[15]

J. Leray, Essai sur les mouvements d'un liquide visqueux emplissant l'espace, Acta Mathematica, 63 (1934), 193-248.   Google Scholar

[16]

A. S. Makhalov and V. P. Nikolaenko, Global solvability of three-dimensional Navier-Stokes equations with uniformly high initial vorticity, Uspekhi Mat. Nauk, 58 (2003), 79-110.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[17]

J. C. Robinson and W. Sadowski, A local smoothness criterion for solutions of the 3D Navier-Stokes equations, Rend. Semin. Mat. Univ. Padova, 131 (2014), 159-178.  doi: 10.4171/RSMUP/131-9.  Google Scholar

[1]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[2]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[3]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[4]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[5]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[15]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[20]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]