May  2020, 40(5): 2641-2669. doi: 10.3934/dcds.2020144

$\sigma$-finite invariant densities for eventually conservative Markov operators

Department of Mathematics, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan

Received  March 2019 Revised  December 2019 Published  March 2020

We establish equivalent conditions for the existence of an integrable or locally integrable fixed point for a Markov operator with the maximal support. Maximal support means that almost all initial points will concentrate on the support of the invariant density under the iteration of the process. One of the equivalent conditions for the existence of a locally integrable fixed point is weak almost periodicity of the jump operator with respect to some sweep-out set. This result includes the case of the existence of an absolutely continuous $ \sigma $-finite invariant measure when we consider a nonsingular transformation on a probability space. Weak almost periodicity implies the Jacobs-Deleeuw-Glicksberg splitting and we show that constrictive Markov operators which guarantee the spectral decomposition are typical weakly almost periodic operators.

Citation: Hisayoshi Toyokawa. $\sigma$-finite invariant densities for eventually conservative Markov operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2641-2669. doi: 10.3934/dcds.2020144
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

J. AaronsonM. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc., 337 (1993), 495-548.  doi: 10.1090/S0002-9947-1993-1107025-2.  Google Scholar

[3]

D. W. Dean and L. Sucheston, On invariant measures for operators, Z. Wahrscheinlichkeitstheorie Verw. Geb., 6 (1966), 1-9.  doi: 10.1007/BF00531807.  Google Scholar

[4] J. Ding and A. H. Zhou, Statistical Properties of Deterministic Systems, Tsinghua University Texts, Springer-Verlag, Berlin, Tsinghua University Press, Beijing, 2009.  doi: 10.1007/978-3-540-85367-1.  Google Scholar
[5]

N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, Interscience Publishers, Ltd., London, 1958.  Google Scholar

[6]

E. Y. Emel'yanov, Invariant densities and mean ergodicity of Markov operators, Israel Journal of Math., 136 (2003), 373-379.  doi: 10.1007/BF02807206.  Google Scholar

[7]

E. Y. Emel'yanov, Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Operator Theory: Advances and Applications, 173. Birkhäuser Verlag, Basel, 2007.  Google Scholar

[8]

S. Eigen, A. Hajian, Y. Ito and V. Prasad, Weakly Wandering Sequences in Ergodic Theory, Springer Monographs in Mathematics, Springer, Tokyo, 2014. doi: 10.1007/978-4-431-55108-9.  Google Scholar

[9]

S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969.  Google Scholar

[10]

A. B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc., 110 (1964), 136-151.  doi: 10.1090/S0002-9947-1964-0154961-1.  Google Scholar

[11]

P. R. Halmos, Invariant measures, Ann. of Math., 48 (1947), 735-754.  doi: 10.2307/1969138.  Google Scholar

[12]

H. Y. Hu and L.-S. Young, Nonexistence of SBR measures for some diffeomorphisms that are "almost Anosov", Ergodic Theory Dynam. Systems, 15 (1995), 67-76.  doi: 10.1017/S0143385700008245.  Google Scholar

[13]

T. Inoue, Invariant measures for position dependent random maps with continuous random parameters, Studia Math., 208 (2012), 11-29.  doi: 10.4064/sm208-1-2.  Google Scholar

[14]

T. Inoue, First return maps of random map and invariant measures, Nonlinearity, 33 (2019). doi: 10.1088/1361-6544/ab4c83.  Google Scholar

[15]

T. Inoue and H. Ishitani, Asymptotic periodicity of densities and ergodic properties for nonsingular systems, Hiroshima Math. J., 21 (1991), 597-620.  doi: 10.32917/hmj/1206128723.  Google Scholar

[16]

Y. Ito, Invariant measures for Markov processes, Trans. Amer. Math. Soc., 110 (1964), 152-184.  doi: 10.1090/S0002-9947-1964-0158049-5.  Google Scholar

[17]

Y. Iwata and T. Ogihara, Random perturbations of non-singular transformation on [0, 1], Hokkaido Math. J., 42 (2013), 269-291.  doi: 10.14492/hokmj/1372859588.  Google Scholar

[18]

J. Komorník, Asymptotic periodicity of iterates of weakly constrictive Markov operators, Tohoku Math. J., 38 (1986), 15-27.  doi: 10.2748/tmj/1178228533.  Google Scholar

[19]

J. Komorník, Asymptotic decomposition of smoothing positive operators, Acta Univ. Carolina. Math. Physica, 30 (1989), 77-81.   Google Scholar

[20]

U. Krengel, Ergodic Theorems, De Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co., Berlin, 1985. doi: 10.1515/9783110844641.  Google Scholar

[21]

A. LambertS. Siboni and S. Vaienti, Statistical properties of a nonuniformly hyperbolic map of the interval, J. Statist. Phys., 72 (1993), 1305-1330.  doi: 10.1007/BF01048188.  Google Scholar

[22] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge, 1985.  doi: 10.1017/CBO9780511897474.  Google Scholar
[23]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Second edition, Applied Mathematical Sciences, 97. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[24]

A. LasotaT.-Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. of the Amer. Math. Soc., 286 (1984), 751-764.  doi: 10.1090/S0002-9947-1984-0760984-4.  Google Scholar

[25]

C. LiveraniB. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.  doi: 10.1017/S0143385799133856.  Google Scholar

[26]

M. Mori, On the intermittency of a piecewise linear map (Takahashi model), Tokyo J. Math., 16 (1993), 411-428.  doi: 10.3836/tjm/1270128495.  Google Scholar

[27]

J. Myjak and T. Szarek, On the existence of an invariant measure for Markov-Feller operators, J. Math. Anal. Appl., 294 (2004), 215-222.  doi: 10.1016/j.jmaa.2004.02.011.  Google Scholar

[28]

N. Provatas and M. C. Mackey, Asymptotic periodicity and banded chaos, Phys. D, 53 (1991), 295-318.  doi: 10.1016/0167-2789(91)90067-J.  Google Scholar

[29]

H. L. Royden and P. M. Fitzpatrick, Real Analysis, Fourth Edit, Pearson, 2010. Google Scholar

[30]

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math., 43 (1995), 245-262.   Google Scholar

[31]

R. Rudnicki, Asymptotic stability of Markov operators: A counter-example, Bull. Polish Acad. Sci. Math., 45 (1997), 1-5.   Google Scholar

[32]

F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.  Google Scholar

[33] F. Schweiger, Multidimensional Continued Fractions, Oxford Science Publications, Oxford University Press, Oxford, 2000.   Google Scholar
[34]

F. H. Simons and D. A. Overdijk, Recurrent and sweep-out sets for Markov processes, Monatsh. Math., 86 (1978/79), 305-326.  doi: 10.1007/BF01300246.  Google Scholar

[35]

J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math., 48 (1988), 51-56.  doi: 10.4064/ap-48-1-51-56.  Google Scholar

[36]

E. Straube, On the existence of invariant, absolutely continuous measures, Comm. Math. Phys., 81 (1981), 27-30.  doi: 10.1007/BF01941798.  Google Scholar

[37]

T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math., 154 (2003), 207-222.  doi: 10.4064/sm154-3-2.  Google Scholar

[38]

T. Szarek, The uniqueness of invariant measures for Markov operators, Studia Math., 189 (2008), 225-233.  doi: 10.4064/sm189-3-2.  Google Scholar

[39]

L. Sucheston, Banach limits, Amer. Math. Monthly, 74 (1967), 308-311.  doi: 10.2307/2316038.  Google Scholar

[40]

L. Sucheston, On existence of finite invariant measures, Math. Zeitschrift, 86 (1964), 327-336.  doi: 10.1007/BF01110407.  Google Scholar

[41]

M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.  doi: 10.1007/BF02788928.  Google Scholar

[42]

M. Thaler, Transformations on [0, 1] with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.  doi: 10.1007/BF02760623.  Google Scholar

[43]

T. YoshidaH. Mori and H. Shigematsu, Analytic study of chaos of the tent map: Band structures, power spectra, and critical behaviors, J. Statist. Phys., 31 (1983), 279-308.  doi: 10.1007/BF01011583.  Google Scholar

[44]

K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Annal. of Math., 42 (1941), 188-228.  doi: 10.2307/1968993.  Google Scholar

[45]

M. Yuri, On a Bernoulli property for multidimensional mappings with finite range structure, Tokyo J. Math., 9 (1986), 457-485.  doi: 10.3836/tjm/1270150732.  Google Scholar

[46]

M. Yuri, Invariant measures for certain multi-dimensional maps, Nonlinearity, 7 (1994), 1093-1124.  doi: 10.1088/0951-7715/7/3/018.  Google Scholar

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. doi: 10.1090/surv/050.  Google Scholar

[2]

J. AaronsonM. Denker and M. Urbański, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc., 337 (1993), 495-548.  doi: 10.1090/S0002-9947-1993-1107025-2.  Google Scholar

[3]

D. W. Dean and L. Sucheston, On invariant measures for operators, Z. Wahrscheinlichkeitstheorie Verw. Geb., 6 (1966), 1-9.  doi: 10.1007/BF00531807.  Google Scholar

[4] J. Ding and A. H. Zhou, Statistical Properties of Deterministic Systems, Tsinghua University Texts, Springer-Verlag, Berlin, Tsinghua University Press, Beijing, 2009.  doi: 10.1007/978-3-540-85367-1.  Google Scholar
[5]

N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7. Interscience Publishers, Inc., New York, Interscience Publishers, Ltd., London, 1958.  Google Scholar

[6]

E. Y. Emel'yanov, Invariant densities and mean ergodicity of Markov operators, Israel Journal of Math., 136 (2003), 373-379.  doi: 10.1007/BF02807206.  Google Scholar

[7]

E. Y. Emel'yanov, Non-Spectral Asymptotic Analysis of One-Parameter Operator Semigroups, Operator Theory: Advances and Applications, 173. Birkhäuser Verlag, Basel, 2007.  Google Scholar

[8]

S. Eigen, A. Hajian, Y. Ito and V. Prasad, Weakly Wandering Sequences in Ergodic Theory, Springer Monographs in Mathematics, Springer, Tokyo, 2014. doi: 10.1007/978-4-431-55108-9.  Google Scholar

[9]

S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Mathematical Studies, No. 21. Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969.  Google Scholar

[10]

A. B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc., 110 (1964), 136-151.  doi: 10.1090/S0002-9947-1964-0154961-1.  Google Scholar

[11]

P. R. Halmos, Invariant measures, Ann. of Math., 48 (1947), 735-754.  doi: 10.2307/1969138.  Google Scholar

[12]

H. Y. Hu and L.-S. Young, Nonexistence of SBR measures for some diffeomorphisms that are "almost Anosov", Ergodic Theory Dynam. Systems, 15 (1995), 67-76.  doi: 10.1017/S0143385700008245.  Google Scholar

[13]

T. Inoue, Invariant measures for position dependent random maps with continuous random parameters, Studia Math., 208 (2012), 11-29.  doi: 10.4064/sm208-1-2.  Google Scholar

[14]

T. Inoue, First return maps of random map and invariant measures, Nonlinearity, 33 (2019). doi: 10.1088/1361-6544/ab4c83.  Google Scholar

[15]

T. Inoue and H. Ishitani, Asymptotic periodicity of densities and ergodic properties for nonsingular systems, Hiroshima Math. J., 21 (1991), 597-620.  doi: 10.32917/hmj/1206128723.  Google Scholar

[16]

Y. Ito, Invariant measures for Markov processes, Trans. Amer. Math. Soc., 110 (1964), 152-184.  doi: 10.1090/S0002-9947-1964-0158049-5.  Google Scholar

[17]

Y. Iwata and T. Ogihara, Random perturbations of non-singular transformation on [0, 1], Hokkaido Math. J., 42 (2013), 269-291.  doi: 10.14492/hokmj/1372859588.  Google Scholar

[18]

J. Komorník, Asymptotic periodicity of iterates of weakly constrictive Markov operators, Tohoku Math. J., 38 (1986), 15-27.  doi: 10.2748/tmj/1178228533.  Google Scholar

[19]

J. Komorník, Asymptotic decomposition of smoothing positive operators, Acta Univ. Carolina. Math. Physica, 30 (1989), 77-81.   Google Scholar

[20]

U. Krengel, Ergodic Theorems, De Gruyter Studies in Mathematics, 6. Walter de Gruyter & Co., Berlin, 1985. doi: 10.1515/9783110844641.  Google Scholar

[21]

A. LambertS. Siboni and S. Vaienti, Statistical properties of a nonuniformly hyperbolic map of the interval, J. Statist. Phys., 72 (1993), 1305-1330.  doi: 10.1007/BF01048188.  Google Scholar

[22] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, Cambridge, 1985.  doi: 10.1017/CBO9780511897474.  Google Scholar
[23]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, Second edition, Applied Mathematical Sciences, 97. Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4286-4.  Google Scholar

[24]

A. LasotaT.-Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, Trans. of the Amer. Math. Soc., 286 (1984), 751-764.  doi: 10.1090/S0002-9947-1984-0760984-4.  Google Scholar

[25]

C. LiveraniB. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems, 19 (1999), 671-685.  doi: 10.1017/S0143385799133856.  Google Scholar

[26]

M. Mori, On the intermittency of a piecewise linear map (Takahashi model), Tokyo J. Math., 16 (1993), 411-428.  doi: 10.3836/tjm/1270128495.  Google Scholar

[27]

J. Myjak and T. Szarek, On the existence of an invariant measure for Markov-Feller operators, J. Math. Anal. Appl., 294 (2004), 215-222.  doi: 10.1016/j.jmaa.2004.02.011.  Google Scholar

[28]

N. Provatas and M. C. Mackey, Asymptotic periodicity and banded chaos, Phys. D, 53 (1991), 295-318.  doi: 10.1016/0167-2789(91)90067-J.  Google Scholar

[29]

H. L. Royden and P. M. Fitzpatrick, Real Analysis, Fourth Edit, Pearson, 2010. Google Scholar

[30]

R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math., 43 (1995), 245-262.   Google Scholar

[31]

R. Rudnicki, Asymptotic stability of Markov operators: A counter-example, Bull. Polish Acad. Sci. Math., 45 (1997), 1-5.   Google Scholar

[32]

F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.  Google Scholar

[33] F. Schweiger, Multidimensional Continued Fractions, Oxford Science Publications, Oxford University Press, Oxford, 2000.   Google Scholar
[34]

F. H. Simons and D. A. Overdijk, Recurrent and sweep-out sets for Markov processes, Monatsh. Math., 86 (1978/79), 305-326.  doi: 10.1007/BF01300246.  Google Scholar

[35]

J. Socała, On the existence of invariant densities for Markov operators, Ann. Polon. Math., 48 (1988), 51-56.  doi: 10.4064/ap-48-1-51-56.  Google Scholar

[36]

E. Straube, On the existence of invariant, absolutely continuous measures, Comm. Math. Phys., 81 (1981), 27-30.  doi: 10.1007/BF01941798.  Google Scholar

[37]

T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math., 154 (2003), 207-222.  doi: 10.4064/sm154-3-2.  Google Scholar

[38]

T. Szarek, The uniqueness of invariant measures for Markov operators, Studia Math., 189 (2008), 225-233.  doi: 10.4064/sm189-3-2.  Google Scholar

[39]

L. Sucheston, Banach limits, Amer. Math. Monthly, 74 (1967), 308-311.  doi: 10.2307/2316038.  Google Scholar

[40]

L. Sucheston, On existence of finite invariant measures, Math. Zeitschrift, 86 (1964), 327-336.  doi: 10.1007/BF01110407.  Google Scholar

[41]

M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math., 37 (1980), 303-314.  doi: 10.1007/BF02788928.  Google Scholar

[42]

M. Thaler, Transformations on [0, 1] with infinite invariant measures, Israel J. Math., 46 (1983), 67-96.  doi: 10.1007/BF02760623.  Google Scholar

[43]

T. YoshidaH. Mori and H. Shigematsu, Analytic study of chaos of the tent map: Band structures, power spectra, and critical behaviors, J. Statist. Phys., 31 (1983), 279-308.  doi: 10.1007/BF01011583.  Google Scholar

[44]

K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Annal. of Math., 42 (1941), 188-228.  doi: 10.2307/1968993.  Google Scholar

[45]

M. Yuri, On a Bernoulli property for multidimensional mappings with finite range structure, Tokyo J. Math., 9 (1986), 457-485.  doi: 10.3836/tjm/1270150732.  Google Scholar

[46]

M. Yuri, Invariant measures for certain multi-dimensional maps, Nonlinearity, 7 (1994), 1093-1124.  doi: 10.1088/0951-7715/7/3/018.  Google Scholar

[1]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[2]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[3]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[8]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[9]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[10]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[11]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[12]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[13]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[14]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[15]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[16]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[17]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[20]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (98)
  • HTML views (83)
  • Cited by (1)

Other articles
by authors

[Back to Top]