May  2020, 40(5): 2671-2685. doi: 10.3934/dcds.2020145

Multiple positive solutions for a Schrödinger logarithmic equation

1. 

Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, Campina Grande, PB, CEP:58429-900, Brazil

2. 

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

* Corresponding author: Chao Ji

Received  May 2019 Revised  December 2019 Published  March 2020

Fund Project: C.O. Alves was partially supported by CNPq/Brazil 304804/2017-7 and C. Ji was partially supported by Shanghai Natural Science Foundation(18ZR1409100)

This article concerns with the existence of multiple positive solutions for the following logarithmic Schrödinger equation
$ \left\{ \begin{array}{lc} -{\epsilon}^2\Delta u+ V(x)u = u \log u^2, & \mbox{in} \quad \mathbb{R}^{N}, \\ u \in H^1(\mathbb{R}^{N}), & \; \\ \end{array} \right. $
where
$ \epsilon >0 $
,
$ N \geq 1 $
and
$ V $
is a continuous function with a global minimum. Using variational method, we prove that for small enough
$ \epsilon>0 $
, the "shape" of the graph of the function
$ V $
affects the number of nontrivial solutions.
Citation: Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145
References:
[1]

C. O. Alves and D. C. de Morais Filho, Existence of concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys., 69 (2018), Art. 144, 22 pp. doi: 10.1007/s00033-018-1038-2.

[2]

D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb{R}^{N}$, Ann. Inst. Henri Poincaré, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.

[3]

P. d'Avenia, E. Montefusco and M. Squassina, On the logarithmic Schrödinger equation, Commun. Contemp. Math., 16 (2014), 1350032, 15 pp. doi: 10.1142/S0219199713500326.

[4]

P. d'AveniaM. Squassina and M. Zenari, Fractional logarithmic Schrödinger equations, Math. Methods Appl. Sci., 38 (2015), 5207-5216.  doi: 10.1002/mma.3449.

[5]

M. Degiovanni and S. Zani, Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Nonlinear operator theory, Math. Comput. Model., 32 (2000), 1377-1393.  doi: 10.1016/S0895-7177(00)00211-9.

[6]

C. Ji and A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., 437 (2016), 241-254.  doi: 10.1016/j.jmaa.2015.11.071.

[7]

E. H. Lieb and M. Loss, Analysis, 2nd Edition, Graduate Studies in Math. 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.

[8]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.

[9]

M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differential Equations, 54 (2015), 585-597.  doi: 10.1007/s00526-014-0796-8.

[10]

M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differential Equations, 54 (2015), 585–597, http://dx.doi.org/10.1007/s00526-017-1127-7. doi: 10.1007/s00526-014-0796-8.

[11]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77-109.  doi: 10.1016/S0294-1449(16)30389-4.

[12]

K. Tanaka and C. X. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Cal. Var. Partial Differential Equations, 56 (2017), Art. 33, 35 pp. doi: 10.1007/s00526-017-1122-z.

[13]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[14]

K. G. Zloshchastiev, Logarithmic nonlinearity in the theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297.  doi: 10.1134/S0202289310040067.

show all references

References:
[1]

C. O. Alves and D. C. de Morais Filho, Existence of concentration of positive solutions for a Schrödinger logarithmic equation, Z. Angew. Math. Phys., 69 (2018), Art. 144, 22 pp. doi: 10.1007/s00033-018-1038-2.

[2]

D. M. Cao and E. S. Noussair, Multiplicity of positive and nodal solutions for nonlinear elliptic problem in $\mathbb{R}^{N}$, Ann. Inst. Henri Poincaré, 13 (1996), 567-588.  doi: 10.1016/S0294-1449(16)30115-9.

[3]

P. d'Avenia, E. Montefusco and M. Squassina, On the logarithmic Schrödinger equation, Commun. Contemp. Math., 16 (2014), 1350032, 15 pp. doi: 10.1142/S0219199713500326.

[4]

P. d'AveniaM. Squassina and M. Zenari, Fractional logarithmic Schrödinger equations, Math. Methods Appl. Sci., 38 (2015), 5207-5216.  doi: 10.1002/mma.3449.

[5]

M. Degiovanni and S. Zani, Multiple solutions of semilinear elliptic equations with one-sided growth conditions. Nonlinear operator theory, Math. Comput. Model., 32 (2000), 1377-1393.  doi: 10.1016/S0895-7177(00)00211-9.

[6]

C. Ji and A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the potential, J. Math. Anal. Appl., 437 (2016), 241-254.  doi: 10.1016/j.jmaa.2015.11.071.

[7]

E. H. Lieb and M. Loss, Analysis, 2nd Edition, Graduate Studies in Math. 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.

[8]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.

[9]

M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differential Equations, 54 (2015), 585-597.  doi: 10.1007/s00526-014-0796-8.

[10]

M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger equations with periodic potential, Cal. Var. Partial Differential Equations, 54 (2015), 585–597, http://dx.doi.org/10.1007/s00526-017-1127-7. doi: 10.1007/s00526-014-0796-8.

[11]

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77-109.  doi: 10.1016/S0294-1449(16)30389-4.

[12]

K. Tanaka and C. X. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Cal. Var. Partial Differential Equations, 56 (2017), Art. 33, 35 pp. doi: 10.1007/s00526-017-1122-z.

[13]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[14]

K. G. Zloshchastiev, Logarithmic nonlinearity in the theories of quantum gravity: Origin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297.  doi: 10.1134/S0202289310040067.

[1]

Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036

[2]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure and Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[3]

Tai-Chia Lin, Tsung-Fang Wu. Multiple positive solutions of saturable nonlinear Schrödinger equations with intensity functions. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2165-2187. doi: 10.3934/dcds.2020110

[4]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[5]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[6]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[7]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[8]

Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022074

[9]

Renata Bunoiu, Radu Precup, Csaba Varga. Multiple positive standing wave solutions for schrödinger equations with oscillating state-dependent potentials. Communications on Pure and Applied Analysis, 2017, 16 (3) : 953-972. doi: 10.3934/cpaa.2017046

[10]

Jianqing Chen, Qian Zhang. Multiple non-radially symmetrical nodal solutions for the Schrödinger system with positive quasilinear term. Communications on Pure and Applied Analysis, 2022, 21 (2) : 669-686. doi: 10.3934/cpaa.2021193

[11]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055

[12]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1857-1870. doi: 10.3934/dcdss.2020461

[14]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[15]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[16]

Weiming Liu, Lu Gan. Multi-bump positive solutions of a fractional nonlinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2016, 15 (2) : 413-428. doi: 10.3934/cpaa.2016.15.413

[17]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[18]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[19]

Xiang-Dong Fang. Positive solutions for quasilinear Schrödinger equations in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1603-1615. doi: 10.3934/cpaa.2017077

[20]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (251)
  • HTML views (64)
  • Cited by (6)

Other articles
by authors

[Back to Top]