The object | Its property |
$ \mathcal{N} ( u(\cdot ,t) ) \cap ( CS(f)+ \varphi (t )B^n ) $ | $ \subset A_f^\circ ( \sqrt{2nt}-d_f , \sqrt{2nt} ) $, $ \approx S^{n-1} $ |
$ \mathcal{C} ( u(\cdot ,t) ) \cap ( CS(f)+ \varphi (t )B^n ) $ | $ \subset A_f^\circ ( \sqrt{(2n+4)t}-d_f , \sqrt{(2n+4)t} ) \cup CS(f), \sharp \geq 3$ |
$ \mathcal{M} ( u(\cdot ,t) ) $ | $ \subset A_f^\circ ( \sqrt{(2n+4)t}-d_f , \sqrt{(2n+4)t} ) $ |
$ \mathcal{M} (- u(\cdot ,t) ) $ | $ \subset CS(f) $, $ \sharp =1 $, $ \to \left\{ {m_f} \right\} $ as $ t \to \infty $ |