May  2020, 40(5): 2875-2889. doi: 10.3934/dcds.2020152

A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models

1. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, Faculty of Natural Sciences, 17 University AVE. STE 1701 San Juan PR 00925-2537, USA

2. 

Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA

3. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

* Corresponding author: Louis Tebou

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: The work of V. Keyantuo and M. Warma is partially supported by the Air Force Office of Scientific Research under Award NO [FA9550-18-1-0242]

In a bounded domain, we consider a thermoelastic plate with rotational forces. The rotational forces involve the spectral fractional Laplacian, with power parameter $ 0\le\theta\le 1 $. The model includes both the Euler-Bernoulli ($ \theta = 0 $) and Kirchhoff ($ \theta = 1 $) models for thermoelastic plate as special cases. First, we show that the underlying semigroup is of Gevrey class $ \delta $ for every $ \delta>(2-\theta)/(2-4\theta) $ for both the clamped and hinged boundary conditions when the parameter $ \theta $ lies in the interval $ (0, 1/2) $. Then, we show that the semigroup is exponentially stable for hinged boundary conditions, for all values of $ \theta $ in $ [0, 1] $. Finally, we prove, by constructing a counterexample, that, under hinged boundary conditions, the semigroup is not analytic, for all $ \theta $ in the interval $ (0, 1] $. The main features of our Gevrey class proof are: the frequency domain method, appropriate decompositions of the components of the system and the use of Lions' interpolation inequalities.

Citation: Valentin Keyantuo, Louis Tebou, Mahamadi Warma. A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2875-2889. doi: 10.3934/dcds.2020152
References:
[1]

H. AntilJ. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: Analysis and discretization, ESAIM Math. Model. Numer. Anal., 51 (2017), 2049-2067.  doi: 10.1051/m2an/2017023.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.   Google Scholar

[3]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182.  doi: 10.1137/S0036141096300823.  Google Scholar

[4]

S. P. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < 1/2$, Proc. Am. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.  Google Scholar

[5]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.  doi: 10.1007/BF00276727.  Google Scholar

[6]

F. Dell'OroJ. E. Mun oz-Rivera and V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equations, 13 (2013), 777-794.  doi: 10.1007/s00028-013-0202-6.  Google Scholar

[7]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.   Google Scholar

[8]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[9]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[10]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482.   Google Scholar

[12]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differential Equations, 3 (1998), 387-416.   Google Scholar

[13]

I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermo-elastic semigroups, Control and Partial Differential Equations, ESAIM Proc., Soc. Math. Appl. Indust., Paris, 4 (1998), 199-222.  doi: 10.1051/proc:1998029.  Google Scholar

[14]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr, Abstr. Appl. Anal., 3 (1998), 153-169.  doi: 10.1155/S1085337598000487.  Google Scholar

[15]

I. Lasiecka and R. Triggiani, Structural decomposition of thermo-elastic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16-66.  doi: 10.1007/s002330010003.  Google Scholar

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.  doi: 10.1007/s002050050160.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, Research in Applied Mathematics, 8. Masson, Paris, 1988.  Google Scholar

[18]

K. S. Liu and Z. Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar

[19]

Z.-Y. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar

[20]

Z. Y. Liu and S. M. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quarterly Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar

[21]

W.-J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly Appl. Math., 59 (2001), 269-314.  doi: 10.1090/qam/1828455.  Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

G. Perla-Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement, Applied Mathematics Letters, 16 (2003), 531-534.  doi: 10.1016/S0893-9659(03)00032-6.  Google Scholar

[24]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[25]

S. W. Taylor, Gevrey Regularity of Solutions of Evolution Equations and Boundary Controllability, Thesis (Ph.D.)–University of Minnesota. 1989, 182 pp.  Google Scholar

[26]

L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601.  Google Scholar

[27]

L. Tebou, Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), 539-544.  doi: 10.1016/j.crma.2013.07.014.  Google Scholar

show all references

References:
[1]

H. AntilJ. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: Analysis and discretization, ESAIM Math. Model. Numer. Anal., 51 (2017), 2049-2067.  doi: 10.1051/m2an/2017023.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.   Google Scholar

[3]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182.  doi: 10.1137/S0036141096300823.  Google Scholar

[4]

S. P. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < 1/2$, Proc. Am. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.  Google Scholar

[5]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.  doi: 10.1007/BF00276727.  Google Scholar

[6]

F. Dell'OroJ. E. Mun oz-Rivera and V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equations, 13 (2013), 777-794.  doi: 10.1007/s00028-013-0202-6.  Google Scholar

[7]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.   Google Scholar

[8]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[9]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[10]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482.   Google Scholar

[12]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differential Equations, 3 (1998), 387-416.   Google Scholar

[13]

I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermo-elastic semigroups, Control and Partial Differential Equations, ESAIM Proc., Soc. Math. Appl. Indust., Paris, 4 (1998), 199-222.  doi: 10.1051/proc:1998029.  Google Scholar

[14]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr, Abstr. Appl. Anal., 3 (1998), 153-169.  doi: 10.1155/S1085337598000487.  Google Scholar

[15]

I. Lasiecka and R. Triggiani, Structural decomposition of thermo-elastic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16-66.  doi: 10.1007/s002330010003.  Google Scholar

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.  doi: 10.1007/s002050050160.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, Research in Applied Mathematics, 8. Masson, Paris, 1988.  Google Scholar

[18]

K. S. Liu and Z. Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar

[19]

Z.-Y. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar

[20]

Z. Y. Liu and S. M. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quarterly Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar

[21]

W.-J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly Appl. Math., 59 (2001), 269-314.  doi: 10.1090/qam/1828455.  Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

G. Perla-Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement, Applied Mathematics Letters, 16 (2003), 531-534.  doi: 10.1016/S0893-9659(03)00032-6.  Google Scholar

[24]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[25]

S. W. Taylor, Gevrey Regularity of Solutions of Evolution Equations and Boundary Controllability, Thesis (Ph.D.)–University of Minnesota. 1989, 182 pp.  Google Scholar

[26]

L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601.  Google Scholar

[27]

L. Tebou, Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), 539-544.  doi: 10.1016/j.crma.2013.07.014.  Google Scholar

[1]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[2]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[5]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[9]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[10]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[11]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[12]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[13]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[14]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[15]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[16]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[17]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[18]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[19]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[20]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (145)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]