May  2020, 40(5): 2875-2889. doi: 10.3934/dcds.2020152

A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models

1. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, Faculty of Natural Sciences, 17 University AVE. STE 1701 San Juan PR 00925-2537, USA

2. 

Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA

3. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

* Corresponding author: Louis Tebou

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: The work of V. Keyantuo and M. Warma is partially supported by the Air Force Office of Scientific Research under Award NO [FA9550-18-1-0242]

In a bounded domain, we consider a thermoelastic plate with rotational forces. The rotational forces involve the spectral fractional Laplacian, with power parameter $ 0\le\theta\le 1 $. The model includes both the Euler-Bernoulli ($ \theta = 0 $) and Kirchhoff ($ \theta = 1 $) models for thermoelastic plate as special cases. First, we show that the underlying semigroup is of Gevrey class $ \delta $ for every $ \delta>(2-\theta)/(2-4\theta) $ for both the clamped and hinged boundary conditions when the parameter $ \theta $ lies in the interval $ (0, 1/2) $. Then, we show that the semigroup is exponentially stable for hinged boundary conditions, for all values of $ \theta $ in $ [0, 1] $. Finally, we prove, by constructing a counterexample, that, under hinged boundary conditions, the semigroup is not analytic, for all $ \theta $ in the interval $ (0, 1] $. The main features of our Gevrey class proof are: the frequency domain method, appropriate decompositions of the components of the system and the use of Lions' interpolation inequalities.

Citation: Valentin Keyantuo, Louis Tebou, Mahamadi Warma. A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2875-2889. doi: 10.3934/dcds.2020152
References:
[1]

H. AntilJ. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: Analysis and discretization, ESAIM Math. Model. Numer. Anal., 51 (2017), 2049-2067.  doi: 10.1051/m2an/2017023.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.   Google Scholar

[3]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182.  doi: 10.1137/S0036141096300823.  Google Scholar

[4]

S. P. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < 1/2$, Proc. Am. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.  Google Scholar

[5]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.  doi: 10.1007/BF00276727.  Google Scholar

[6]

F. Dell'OroJ. E. Mun oz-Rivera and V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equations, 13 (2013), 777-794.  doi: 10.1007/s00028-013-0202-6.  Google Scholar

[7]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.   Google Scholar

[8]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[9]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[10]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482.   Google Scholar

[12]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differential Equations, 3 (1998), 387-416.   Google Scholar

[13]

I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermo-elastic semigroups, Control and Partial Differential Equations, ESAIM Proc., Soc. Math. Appl. Indust., Paris, 4 (1998), 199-222.  doi: 10.1051/proc:1998029.  Google Scholar

[14]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr, Abstr. Appl. Anal., 3 (1998), 153-169.  doi: 10.1155/S1085337598000487.  Google Scholar

[15]

I. Lasiecka and R. Triggiani, Structural decomposition of thermo-elastic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16-66.  doi: 10.1007/s002330010003.  Google Scholar

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.  doi: 10.1007/s002050050160.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, Research in Applied Mathematics, 8. Masson, Paris, 1988.  Google Scholar

[18]

K. S. Liu and Z. Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar

[19]

Z.-Y. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar

[20]

Z. Y. Liu and S. M. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quarterly Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar

[21]

W.-J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly Appl. Math., 59 (2001), 269-314.  doi: 10.1090/qam/1828455.  Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

G. Perla-Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement, Applied Mathematics Letters, 16 (2003), 531-534.  doi: 10.1016/S0893-9659(03)00032-6.  Google Scholar

[24]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[25]

S. W. Taylor, Gevrey Regularity of Solutions of Evolution Equations and Boundary Controllability, Thesis (Ph.D.)–University of Minnesota. 1989, 182 pp.  Google Scholar

[26]

L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601.  Google Scholar

[27]

L. Tebou, Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), 539-544.  doi: 10.1016/j.crma.2013.07.014.  Google Scholar

show all references

References:
[1]

H. AntilJ. Pfefferer and M. Warma, A note on semilinear fractional elliptic equation: Analysis and discretization, ESAIM Math. Model. Numer. Anal., 51 (2017), 2049-2067.  doi: 10.1051/m2an/2017023.  Google Scholar

[2]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.   Google Scholar

[3]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation, SIAM J. Math. Anal., 29 (1998), 155-182.  doi: 10.1137/S0036141096300823.  Google Scholar

[4]

S. P. Chen and R. Triggiani, Gevrey class semigroups arising from elastic systems with gentle dissipation: The case $0 < \alpha < 1/2$, Proc. Am. Math. Soc., 110 (1990), 401-415.  doi: 10.2307/2048084.  Google Scholar

[5]

C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal., 29 (1968), 241-271.  doi: 10.1007/BF00276727.  Google Scholar

[6]

F. Dell'OroJ. E. Mun oz-Rivera and V. Pata, Stability properties of an abstract system with applications to linear thermoelastic plates, J. Evol. Equations, 13 (2013), 777-794.  doi: 10.1007/s00028-013-0202-6.  Google Scholar

[7]

F. L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1 (1985), 43-56.   Google Scholar

[8]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[9]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris, John Wiley & Sons, Ltd., Chichester, 1994.  Google Scholar

[10]

J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math. 10, SIAM, Philadelphia, PA, 1989. doi: 10.1137/1.9781611970821.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4), 27 (1998), 457-482.   Google Scholar

[12]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the s.c. semigroup arising in abstract thermo-elastic equations, Adv. Differential Equations, 3 (1998), 387-416.   Google Scholar

[13]

I. Lasiecka and R. Triggiani, Analyticity and lack thereof, of thermo-elastic semigroups, Control and Partial Differential Equations, ESAIM Proc., Soc. Math. Appl. Indust., Paris, 4 (1998), 199-222.  doi: 10.1051/proc:1998029.  Google Scholar

[14]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann B.C. Abstr, Abstr. Appl. Anal., 3 (1998), 153-169.  doi: 10.1155/S1085337598000487.  Google Scholar

[15]

I. Lasiecka and R. Triggiani, Structural decomposition of thermo-elastic semigroups with rotational forces, Semigroup Forum, 60 (2000), 16-66.  doi: 10.1007/s002330010003.  Google Scholar

[16]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity, Arch. Ration. Mech. Anal., 148 (1999), 179-231.  doi: 10.1007/s002050050160.  Google Scholar

[17]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation des Systèmes Distribués, Research in Applied Mathematics, 8. Masson, Paris, 1988.  Google Scholar

[18]

K. S. Liu and Z. Y. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. Angew. Math. Phys., 48 (1997), 885-904.  doi: 10.1007/s000330050071.  Google Scholar

[19]

Z.-Y. Liu and M. Renardy, A note on the equations of thermoelastic plate, Appl. Math. Lett., 8 (1995), 1-6.  doi: 10.1016/0893-9659(95)00020-Q.  Google Scholar

[20]

Z. Y. Liu and S. M. Zheng, Exponential stability of the Kirchhoff plate with thermal or viscoelastic damping, Quarterly Appl. Math., 55 (1997), 551-564.  doi: 10.1090/qam/1466148.  Google Scholar

[21]

W.-J. Liu and E. Zuazua, Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly Appl. Math., 59 (2001), 269-314.  doi: 10.1090/qam/1828455.  Google Scholar

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[23]

G. Perla-Menzala and E. Zuazua, The energy decay rate for the modified von Kármán system of thermoelastic plates: An improvement, Applied Mathematics Letters, 16 (2003), 531-534.  doi: 10.1016/S0893-9659(03)00032-6.  Google Scholar

[24]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.  Google Scholar

[25]

S. W. Taylor, Gevrey Regularity of Solutions of Evolution Equations and Boundary Controllability, Thesis (Ph.D.)–University of Minnesota. 1989, 182 pp.  Google Scholar

[26]

L. Tebou, Stabilization of some coupled hyperbolic/parabolic equations, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1601-1620.  doi: 10.3934/dcdsb.2010.14.1601.  Google Scholar

[27]

L. Tebou, Uniform analyticity and exponential decay of the semigroup associated with a thermoelastic plate equation with perturbed boundary conditions, C. R. Math. Acad. Sci. Paris, 351 (2013), 539-544.  doi: 10.1016/j.crma.2013.07.014.  Google Scholar

[1]

Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento, Karina Schiabel. Pullback attractors for a class of non-autonomous thermoelastic plate systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3553-3571. doi: 10.3934/dcdsb.2017214

[2]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[3]

Abdallah Ben Abdallah, Farhat Shel. Exponential stability of a general network of 1-d thermoelastic rods. Mathematical Control & Related Fields, 2012, 2 (1) : 1-16. doi: 10.3934/mcrf.2012.2.1

[4]

Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156

[5]

Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations & Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001

[6]

Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733

[7]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[8]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Exponential stability for a class of linear hyperbolic equations with hereditary memory. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1555-1565. doi: 10.3934/dcdsb.2013.18.1555

[9]

Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274

[10]

Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations & Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016

[11]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[12]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[13]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040

[14]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[15]

Iryna Ryzhkova-Gerasymova. Long time behaviour of strong solutions to interactive fluid-plate system without rotational inertia. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1243-1265. doi: 10.3934/dcdsb.2018150

[16]

Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599

[17]

Takayuki Niimura. Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2561-2591. doi: 10.3934/dcds.2020141

[18]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[19]

Mei-Qin Zhan. Gevrey class regularity for the solutions of the Phase-Lock equations of Superconductivity. Conference Publications, 2001, 2001 (Special) : 406-415. doi: 10.3934/proc.2001.2001.406

[20]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]