• Previous Article
    Statistical stability for Barge-Martin attractors derived from tent maps
  • DCDS Home
  • This Issue
  • Next Article
    A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models
May  2020, 40(5): 2891-2901. doi: 10.3934/dcds.2020153

Realization of big centralizers of minimal aperiodic actions on the Cantor set

1. 

Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile

2. 

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS-UMR 7352, Université de Picardie Jules Verne, 33, rue Saint Leu 80039 Amiens Cedex 1, France

Received  August 2019 Revised  November 2019 Published  March 2020

Fund Project: The first author was supported by proyecto Fondecyt Regular No. 1190538.This research was supported through the cooperation project MathAmSud DCS 38889 TM

In this article we study the centralizer of a minimal aperiodic action of a countable group on the Cantor set (an aperiodic minimal Cantor system). We show that any countable residually finite group is the subgroup of the centralizer of some minimal $ \mathbb Z $ action on the Cantor set, and that any countable group is the subgroup of the normalizer of a minimal aperiodic action of an abelian countable free group on the Cantor set. On the other hand we show that for any countable group $ G $, the centralizer of any minimal aperiodic $ G $-action on the Cantor set is a subgroup of the centralizer of a minimal $ \mathbb Z $-action.

Citation: María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153
References:
[1]

N. AubrunS. Barbieri and S. Thomassé, Realization of aperiodic subshifts and uniform densities in groups, Groups Geom. Dyn., 13 (2019), 107-129.  doi: 10.4171/GGD/487.  Google Scholar

[2]

M. BaakeJ. A. G. Roberts and R. Yassawi, Reversing and extended symmetries of shift spaces, Discrete and Continuous Dynamical Systems, 38 (2018), 835-866.  doi: 10.3934/dcds.2018036.  Google Scholar

[3]

M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.  doi: 10.1090/S0002-9947-1988-0927684-2.  Google Scholar

[4]

W. Bulatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math., 103 (1992), 133-142.  doi: 10.4064/sm-103-2-133-142.  Google Scholar

[5]

T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Cellular automata, Encycl. Complex. Syst. Sci., Springer, New York, (2018), 221–238.  Google Scholar

[6]

M. I. Cortez and S. Petite, $G$-odometers and their almost one-to-one extensions, J. London Math. Soc. (2), 78 (2008), 1-20.  doi: 10.1112/jlms/jdn002.  Google Scholar

[7]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), 28 pp. doi: 10.19086/da.611.  Google Scholar

[8]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 144 (2016), 613-621.  doi: 10.1090/proc12719.  Google Scholar

[9]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27 pp. doi: 10.1017/fms.2015.3.  Google Scholar

[10]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495.  doi: 10.3934/jmd.2016.10.483.  Google Scholar

[11]

V. CyrJ. FranksB. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147-161.  doi: 10.3934/jmd.2018015.  Google Scholar

[12]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory and Dynam. Systems, 36 (2016), 64-95.  doi: 10.1017/etds.2015.70.  Google Scholar

[13]

S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of Toeplitz subshifts, Discrete Anal., 2017 (2017), 19 pp.  Google Scholar

[14]

F. DurandN. Ormes and S. Petite, Self-induced systems, J. Anal. Math., 135 (2018), 725-756.  doi: 10.1007/s11854-018-0051-x.  Google Scholar

[15]

T. GiordanoI. F. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.  doi: 10.1007/BF02810689.  Google Scholar

[16]

E. Glasner, T. Tsankov, B. Weiss and A. Zucker, Bernoulli disjointness, Preprint, arXiv: 1901.03406. Google Scholar

[17]

G. Hjorth and M. Molberg, Free continuous actions on zero-dimensional spaces, Topology Appl., 153 (2006), 1116-1131.  doi: 10.1016/j.topol.2005.03.003.  Google Scholar

[18]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., 178 (2013), 775-787.  doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[19]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[20]

H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., 17 (2006), 231-251.  doi: 10.1142/S0129167X06003448.  Google Scholar

[21]

K. Medynets, Reconstruction of orbits of Cantor systems from full groups, Bull. Lond. Math. Soc., 43 (2011), 1104-1110.  doi: 10.1112/blms/bdr045.  Google Scholar

[22]

K. Medynets and J. P. Talisse, Toeplitz subshifts with trivial centralizers and positive entropy, Involve, 12 (2019), 395-410.  doi: 10.2140/involve.2019.12.395.  Google Scholar

[23]

V. Salo and M. Schraudner, Automorphism groups of subshifts via group extensions, preprint. Google Scholar

[24]

D. Witte, Arithmetic groups of higher Q-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc., 122 (1994), 333-340.  doi: 10.2307/2161021.  Google Scholar

show all references

References:
[1]

N. AubrunS. Barbieri and S. Thomassé, Realization of aperiodic subshifts and uniform densities in groups, Groups Geom. Dyn., 13 (2019), 107-129.  doi: 10.4171/GGD/487.  Google Scholar

[2]

M. BaakeJ. A. G. Roberts and R. Yassawi, Reversing and extended symmetries of shift spaces, Discrete and Continuous Dynamical Systems, 38 (2018), 835-866.  doi: 10.3934/dcds.2018036.  Google Scholar

[3]

M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.  doi: 10.1090/S0002-9947-1988-0927684-2.  Google Scholar

[4]

W. Bulatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math., 103 (1992), 133-142.  doi: 10.4064/sm-103-2-133-142.  Google Scholar

[5]

T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Cellular automata, Encycl. Complex. Syst. Sci., Springer, New York, (2018), 221–238.  Google Scholar

[6]

M. I. Cortez and S. Petite, $G$-odometers and their almost one-to-one extensions, J. London Math. Soc. (2), 78 (2008), 1-20.  doi: 10.1112/jlms/jdn002.  Google Scholar

[7]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), 28 pp. doi: 10.19086/da.611.  Google Scholar

[8]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 144 (2016), 613-621.  doi: 10.1090/proc12719.  Google Scholar

[9]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27 pp. doi: 10.1017/fms.2015.3.  Google Scholar

[10]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495.  doi: 10.3934/jmd.2016.10.483.  Google Scholar

[11]

V. CyrJ. FranksB. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147-161.  doi: 10.3934/jmd.2018015.  Google Scholar

[12]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory and Dynam. Systems, 36 (2016), 64-95.  doi: 10.1017/etds.2015.70.  Google Scholar

[13]

S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of Toeplitz subshifts, Discrete Anal., 2017 (2017), 19 pp.  Google Scholar

[14]

F. DurandN. Ormes and S. Petite, Self-induced systems, J. Anal. Math., 135 (2018), 725-756.  doi: 10.1007/s11854-018-0051-x.  Google Scholar

[15]

T. GiordanoI. F. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.  doi: 10.1007/BF02810689.  Google Scholar

[16]

E. Glasner, T. Tsankov, B. Weiss and A. Zucker, Bernoulli disjointness, Preprint, arXiv: 1901.03406. Google Scholar

[17]

G. Hjorth and M. Molberg, Free continuous actions on zero-dimensional spaces, Topology Appl., 153 (2006), 1116-1131.  doi: 10.1016/j.topol.2005.03.003.  Google Scholar

[18]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., 178 (2013), 775-787.  doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[19]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[20]

H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., 17 (2006), 231-251.  doi: 10.1142/S0129167X06003448.  Google Scholar

[21]

K. Medynets, Reconstruction of orbits of Cantor systems from full groups, Bull. Lond. Math. Soc., 43 (2011), 1104-1110.  doi: 10.1112/blms/bdr045.  Google Scholar

[22]

K. Medynets and J. P. Talisse, Toeplitz subshifts with trivial centralizers and positive entropy, Involve, 12 (2019), 395-410.  doi: 10.2140/involve.2019.12.395.  Google Scholar

[23]

V. Salo and M. Schraudner, Automorphism groups of subshifts via group extensions, preprint. Google Scholar

[24]

D. Witte, Arithmetic groups of higher Q-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc., 122 (1994), 333-340.  doi: 10.2307/2161021.  Google Scholar

[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[7]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[8]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[9]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (103)
  • HTML views (73)
  • Cited by (1)

Other articles
by authors

[Back to Top]