• Previous Article
    Statistical stability for Barge-Martin attractors derived from tent maps
  • DCDS Home
  • This Issue
  • Next Article
    A Gevrey class semigroup for a thermoelastic plate model with a fractional Laplacian: Between the Euler-Bernoulli and Kirchhoff models
May  2020, 40(5): 2891-2901. doi: 10.3934/dcds.2020153

Realization of big centralizers of minimal aperiodic actions on the Cantor set

1. 

Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Avenida Libertador Bernardo O'Higgins 3363, Santiago, Chile

2. 

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS-UMR 7352, Université de Picardie Jules Verne, 33, rue Saint Leu 80039 Amiens Cedex 1, France

Received  August 2019 Revised  November 2019 Published  March 2020

Fund Project: The first author was supported by proyecto Fondecyt Regular No. 1190538.This research was supported through the cooperation project MathAmSud DCS 38889 TM

In this article we study the centralizer of a minimal aperiodic action of a countable group on the Cantor set (an aperiodic minimal Cantor system). We show that any countable residually finite group is the subgroup of the centralizer of some minimal $ \mathbb Z $ action on the Cantor set, and that any countable group is the subgroup of the normalizer of a minimal aperiodic action of an abelian countable free group on the Cantor set. On the other hand we show that for any countable group $ G $, the centralizer of any minimal aperiodic $ G $-action on the Cantor set is a subgroup of the centralizer of a minimal $ \mathbb Z $-action.

Citation: María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153
References:
[1]

N. AubrunS. Barbieri and S. Thomassé, Realization of aperiodic subshifts and uniform densities in groups, Groups Geom. Dyn., 13 (2019), 107-129.  doi: 10.4171/GGD/487.  Google Scholar

[2]

M. BaakeJ. A. G. Roberts and R. Yassawi, Reversing and extended symmetries of shift spaces, Discrete and Continuous Dynamical Systems, 38 (2018), 835-866.  doi: 10.3934/dcds.2018036.  Google Scholar

[3]

M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.  doi: 10.1090/S0002-9947-1988-0927684-2.  Google Scholar

[4]

W. Bulatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math., 103 (1992), 133-142.  doi: 10.4064/sm-103-2-133-142.  Google Scholar

[5]

T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Cellular automata, Encycl. Complex. Syst. Sci., Springer, New York, (2018), 221–238.  Google Scholar

[6]

M. I. Cortez and S. Petite, $G$-odometers and their almost one-to-one extensions, J. London Math. Soc. (2), 78 (2008), 1-20.  doi: 10.1112/jlms/jdn002.  Google Scholar

[7]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), 28 pp. doi: 10.19086/da.611.  Google Scholar

[8]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 144 (2016), 613-621.  doi: 10.1090/proc12719.  Google Scholar

[9]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27 pp. doi: 10.1017/fms.2015.3.  Google Scholar

[10]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495.  doi: 10.3934/jmd.2016.10.483.  Google Scholar

[11]

V. CyrJ. FranksB. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147-161.  doi: 10.3934/jmd.2018015.  Google Scholar

[12]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory and Dynam. Systems, 36 (2016), 64-95.  doi: 10.1017/etds.2015.70.  Google Scholar

[13]

S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of Toeplitz subshifts, Discrete Anal., 2017 (2017), 19 pp.  Google Scholar

[14]

F. DurandN. Ormes and S. Petite, Self-induced systems, J. Anal. Math., 135 (2018), 725-756.  doi: 10.1007/s11854-018-0051-x.  Google Scholar

[15]

T. GiordanoI. F. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.  doi: 10.1007/BF02810689.  Google Scholar

[16]

E. Glasner, T. Tsankov, B. Weiss and A. Zucker, Bernoulli disjointness, Preprint, arXiv: 1901.03406. Google Scholar

[17]

G. Hjorth and M. Molberg, Free continuous actions on zero-dimensional spaces, Topology Appl., 153 (2006), 1116-1131.  doi: 10.1016/j.topol.2005.03.003.  Google Scholar

[18]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., 178 (2013), 775-787.  doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[19]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[20]

H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., 17 (2006), 231-251.  doi: 10.1142/S0129167X06003448.  Google Scholar

[21]

K. Medynets, Reconstruction of orbits of Cantor systems from full groups, Bull. Lond. Math. Soc., 43 (2011), 1104-1110.  doi: 10.1112/blms/bdr045.  Google Scholar

[22]

K. Medynets and J. P. Talisse, Toeplitz subshifts with trivial centralizers and positive entropy, Involve, 12 (2019), 395-410.  doi: 10.2140/involve.2019.12.395.  Google Scholar

[23]

V. Salo and M. Schraudner, Automorphism groups of subshifts via group extensions, preprint. Google Scholar

[24]

D. Witte, Arithmetic groups of higher Q-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc., 122 (1994), 333-340.  doi: 10.2307/2161021.  Google Scholar

show all references

References:
[1]

N. AubrunS. Barbieri and S. Thomassé, Realization of aperiodic subshifts and uniform densities in groups, Groups Geom. Dyn., 13 (2019), 107-129.  doi: 10.4171/GGD/487.  Google Scholar

[2]

M. BaakeJ. A. G. Roberts and R. Yassawi, Reversing and extended symmetries of shift spaces, Discrete and Continuous Dynamical Systems, 38 (2018), 835-866.  doi: 10.3934/dcds.2018036.  Google Scholar

[3]

M. BoyleD. Lind and D. Rudolph, The automorphism group of a shift of finite type, Trans. Amer. Math. Soc., 306 (1988), 71-114.  doi: 10.1090/S0002-9947-1988-0927684-2.  Google Scholar

[4]

W. Bulatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math., 103 (1992), 133-142.  doi: 10.4064/sm-103-2-133-142.  Google Scholar

[5]

T. Ceccherini-Silberstein and M. Coornaert, Cellular automata and groups, Cellular automata, Encycl. Complex. Syst. Sci., Springer, New York, (2018), 221–238.  Google Scholar

[6]

M. I. Cortez and S. Petite, $G$-odometers and their almost one-to-one extensions, J. London Math. Soc. (2), 78 (2008), 1-20.  doi: 10.1112/jlms/jdn002.  Google Scholar

[7]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes, Discrete Anal., (2016), 28 pp. doi: 10.19086/da.611.  Google Scholar

[8]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 144 (2016), 613-621.  doi: 10.1090/proc12719.  Google Scholar

[9]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity, Forum Math. Sigma, 3 (2015), e5, 27 pp. doi: 10.1017/fms.2015.3.  Google Scholar

[10]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495.  doi: 10.3934/jmd.2016.10.483.  Google Scholar

[11]

V. CyrJ. FranksB. Kra and S. Petite, Distortion and the automorphism group of a shift, J. Mod. Dyn., 13 (2018), 147-161.  doi: 10.3934/jmd.2018015.  Google Scholar

[12]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory and Dynam. Systems, 36 (2016), 64-95.  doi: 10.1017/etds.2015.70.  Google Scholar

[13]

S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of Toeplitz subshifts, Discrete Anal., 2017 (2017), 19 pp.  Google Scholar

[14]

F. DurandN. Ormes and S. Petite, Self-induced systems, J. Anal. Math., 135 (2018), 725-756.  doi: 10.1007/s11854-018-0051-x.  Google Scholar

[15]

T. GiordanoI. F. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320.  doi: 10.1007/BF02810689.  Google Scholar

[16]

E. Glasner, T. Tsankov, B. Weiss and A. Zucker, Bernoulli disjointness, Preprint, arXiv: 1901.03406. Google Scholar

[17]

G. Hjorth and M. Molberg, Free continuous actions on zero-dimensional spaces, Topology Appl., 153 (2006), 1116-1131.  doi: 10.1016/j.topol.2005.03.003.  Google Scholar

[18]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., 178 (2013), 775-787.  doi: 10.4007/annals.2013.178.2.7.  Google Scholar

[19]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[20]

H. Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., 17 (2006), 231-251.  doi: 10.1142/S0129167X06003448.  Google Scholar

[21]

K. Medynets, Reconstruction of orbits of Cantor systems from full groups, Bull. Lond. Math. Soc., 43 (2011), 1104-1110.  doi: 10.1112/blms/bdr045.  Google Scholar

[22]

K. Medynets and J. P. Talisse, Toeplitz subshifts with trivial centralizers and positive entropy, Involve, 12 (2019), 395-410.  doi: 10.2140/involve.2019.12.395.  Google Scholar

[23]

V. Salo and M. Schraudner, Automorphism groups of subshifts via group extensions, preprint. Google Scholar

[24]

D. Witte, Arithmetic groups of higher Q-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc., 122 (1994), 333-340.  doi: 10.2307/2161021.  Google Scholar

[1]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

[2]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[3]

François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39

[4]

Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209

[5]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[6]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[7]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[8]

Safya Belghith. Symbolic dynamics in nondifferentiable system originating in R-L-Diode driven circuit. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 275-292. doi: 10.3934/dcds.2000.6.275

[9]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[10]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[11]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[12]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[13]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[14]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[15]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[16]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[17]

David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287

[18]

Mike Boyle. The work of Mike Hochman on multidimensional symbolic dynamics and Borel dynamics. Journal of Modern Dynamics, 2019, 15: 427-435. doi: 10.3934/jmd.2019026

[19]

Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705

[20]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (88)
  • HTML views (72)
  • Cited by (0)

Other articles
by authors

[Back to Top]