May  2020, 40(5): 2903-2915. doi: 10.3934/dcds.2020154

Statistical stability for Barge-Martin attractors derived from tent maps

1. 

Department of Mathematics, University of Florida, 372 Little Hall, Gainesville, FL 32611-8105, USA

2. 

Departamento de Matemática Aplicada, IME-USP, Rua Do Matão 1010, Cidade Universitária, 05508-090 São Paulo SP, Brazil

3. 

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK

Received  August 2019 Revised  November 2019 Published  March 2020

Fund Project: The authors are grateful for the support of FAPESP grant 2016/25053-8 and CAPES grant 88881.119100/2016-01.

Let $ \{f_t\}_{t\in(1,2]} $ be the family of core tent maps of slopes $ t $. The parameterized Barge-Martin construction yields a family of disk homeomorphisms $ \Phi_t\colon D^2\to D^2 $, having transitive global attractors $ \Lambda_t $ on which $ \Phi_t $ is topologically conjugate to the natural extension of $ f_t $. The unique family of absolutely continuous invariant measures for $ f_t $ induces a family of ergodic $ \Phi_t $-invariant measures $ \nu_t $, supported on the attractors $ \Lambda_t $.

We show that this family $ \nu_t $ varies weakly continuously, and that the measures $ \nu_t $ are physical with respect to a weakly continuously varying family of background Oxtoby-Ulam measures $ \rho_t $.

Similar results are obtained for the family $ \chi_t\colon S^2\to S^2 $ of transitive sphere homeomorphisms, constructed in a previous paper of the authors as factors of the natural extensions of $ f_t $.

Citation: Philip Boyland, André de Carvalho, Toby Hall. Statistical stability for Barge-Martin attractors derived from tent maps. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2903-2915. doi: 10.3934/dcds.2020154
References:
[1] S. Alpern and V. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms, Cambridge Tracts in Mathematics, 139. Cambridge University Press, Cambridge, 2000.   Google Scholar
[2]

J. F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity, 17 (2004), 1193-1215.  doi: 10.1088/0951-7715/17/4/004.  Google Scholar

[3]

J. F. AlvesM. Carvalho and J. Freitas, Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Comm. Math. Phys., 296 (2010), 739-767.  doi: 10.1007/s00220-010-1027-6.  Google Scholar

[4]

J. F. AlvesM. Carvalho and J. Freitas, Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 595-637.  doi: 10.1016/j.anihpc.2009.09.009.  Google Scholar

[5]

J. Alves and A. Pumariño, Entropy formula and continuity of entropy for piecewise expanding maps, arXiv: 1806.01095 [math.DS]. Google Scholar

[6]

J. F. AlvesA. Pumariño and E. Vigil, Statistical stability for multidimensional piecewise expanding maps, Proc. Amer. Math. Soc., 145 (2017), 3057-3068.  doi: 10.1090/proc/13518.  Google Scholar

[7]

J. F. Alves and M. Soufi, Statistical stability and limit laws for Rovella maps, Nonlinearity, 25 (2012), 3527-3552.  doi: 10.1088/0951-7715/25/12/3527.  Google Scholar

[8]

J. F. Alves and M. Soufi, Statistical stability in chaotic dynamics, Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., Springer, Heidelberg, 54 (2013), 7-24.  doi: 10.1007/978-3-642-38830-9_2.  Google Scholar

[9]

J. F. Alves and M. Soufi, Statistical stability of geometric Lorenz attractors, Fund. Math., 224 (2014), 219-231.  doi: 10.4064/fm224-3-2.  Google Scholar

[10]

J. F. Alves and M. Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems, 22 (2002), 1-32.  doi: 10.1017/S0143385702000019.  Google Scholar

[11]

M. Barge, Prime end rotation numbers associated with the Hénon maps, Continuum Theory and Dynamical Systems, Lecture Notes in Pure and Appl. Math., Dekker, New York, 149 (1993), 15-33.   Google Scholar

[12]

M. BargeK. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc., 124 (1996), 3563-3570.  doi: 10.1090/S0002-9939-96-03690-8.  Google Scholar

[13]

M. BargeH. Bruin and S. Štimac, The Ingram conjecture, Geom. Topol., 16 (2012), 2481-2516.  doi: 10.2140/gt.2012.16.2481.  Google Scholar

[14]

M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity, 8 (1995), 29-42.  doi: 10.1088/0951-7715/8/1/003.  Google Scholar

[15]

M. Barge and J. Martin, The construction of global attractors, Proc. Amer. Math. Soc., 110 (1990), 523-525.  doi: 10.1090/S0002-9939-1990-1023342-1.  Google Scholar

[16]

M. Benedicks and L.-S. Young, Sinaǐ-Bowen-Ruelle measures for certain Hénon maps, Invent. Math., 112 (1993), 541-576.  doi: 10.1007/BF01232446.  Google Scholar

[17]

P. Billingsley, Convergence of Probability Measures, Second edition. Wiley Series in Probability and Statistics: Probability and Statistics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.  Google Scholar

[18]

P. BoylandA. de Carvalho and T. Hall, Inverse limits as attractors in parameterized families, Bull. London Math. Soc., 45 (2013), 1075-1085.  doi: 10.1112/blms/bdt032.  Google Scholar

[19]

P. Boyland, A. de Carvalho and T. Hall, Natural extensions of unimodal maps: Virtual sphere homeomorphisms and prime ends of basin boundaries, arXiv: 1704.06624v3 [math.DS]. Google Scholar

[20]

M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc., 11 (1960), 478-483.  doi: 10.1090/S0002-9939-1960-0115157-4.  Google Scholar

[21]

H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Appl., 96 (1999), 191-208.  doi: 10.1016/S0166-8641(98)00054-6.  Google Scholar

[22]

A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup.(4), 13 (1980), 45–93. doi: 10.24033/asens.1377.  Google Scholar

[23]

J. KennedyB. E. Raines and D. R. Stockman, Basins of measures on inverse limit spaces for the induced homeomorphism, Ergodic Theory Dynam. Systems, 30 (2010), 1119-1130.  doi: 10.1017/S0143385709000388.  Google Scholar

[24]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math.(2), 42 (1941), 874-920.  doi: 10.2307/1968772.  Google Scholar

[25]

B. E. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math., 182 (2004), 241-268.  doi: 10.4064/fm182-3-4.  Google Scholar

[26]

C. H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems, 27 (2007), 253-283.  doi: 10.1017/S0143385706000721.  Google Scholar

[27]

M. Viana, Lecture Notes on Attractors and Physical Measures, Monografís del Instituto de Matemática y Ciencias Afines, 8. Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999.  Google Scholar

[28]

Q. D. Wang and L.-S. Young, Strange attractors with one direction of instability, Comm. Math. Phys., 218 (2001), 1-97.  doi: 10.1007/s002200100379.  Google Scholar

[29]

L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.  doi: 10.1023/A:1019762724717.  Google Scholar

show all references

References:
[1] S. Alpern and V. Prasad, Typical Dynamics of Volume Preserving Homeomorphisms, Cambridge Tracts in Mathematics, 139. Cambridge University Press, Cambridge, 2000.   Google Scholar
[2]

J. F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity, 17 (2004), 1193-1215.  doi: 10.1088/0951-7715/17/4/004.  Google Scholar

[3]

J. F. AlvesM. Carvalho and J. Freitas, Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Comm. Math. Phys., 296 (2010), 739-767.  doi: 10.1007/s00220-010-1027-6.  Google Scholar

[4]

J. F. AlvesM. Carvalho and J. Freitas, Statistical stability for Hénon maps of the Benedicks-Carleson type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 595-637.  doi: 10.1016/j.anihpc.2009.09.009.  Google Scholar

[5]

J. Alves and A. Pumariño, Entropy formula and continuity of entropy for piecewise expanding maps, arXiv: 1806.01095 [math.DS]. Google Scholar

[6]

J. F. AlvesA. Pumariño and E. Vigil, Statistical stability for multidimensional piecewise expanding maps, Proc. Amer. Math. Soc., 145 (2017), 3057-3068.  doi: 10.1090/proc/13518.  Google Scholar

[7]

J. F. Alves and M. Soufi, Statistical stability and limit laws for Rovella maps, Nonlinearity, 25 (2012), 3527-3552.  doi: 10.1088/0951-7715/25/12/3527.  Google Scholar

[8]

J. F. Alves and M. Soufi, Statistical stability in chaotic dynamics, Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., Springer, Heidelberg, 54 (2013), 7-24.  doi: 10.1007/978-3-642-38830-9_2.  Google Scholar

[9]

J. F. Alves and M. Soufi, Statistical stability of geometric Lorenz attractors, Fund. Math., 224 (2014), 219-231.  doi: 10.4064/fm224-3-2.  Google Scholar

[10]

J. F. Alves and M. Viana, Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems, 22 (2002), 1-32.  doi: 10.1017/S0143385702000019.  Google Scholar

[11]

M. Barge, Prime end rotation numbers associated with the Hénon maps, Continuum Theory and Dynamical Systems, Lecture Notes in Pure and Appl. Math., Dekker, New York, 149 (1993), 15-33.   Google Scholar

[12]

M. BargeK. Brucks and B. Diamond, Self-similarity in inverse limit spaces of the tent family, Proc. Amer. Math. Soc., 124 (1996), 3563-3570.  doi: 10.1090/S0002-9939-96-03690-8.  Google Scholar

[13]

M. BargeH. Bruin and S. Štimac, The Ingram conjecture, Geom. Topol., 16 (2012), 2481-2516.  doi: 10.2140/gt.2012.16.2481.  Google Scholar

[14]

M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity, 8 (1995), 29-42.  doi: 10.1088/0951-7715/8/1/003.  Google Scholar

[15]

M. Barge and J. Martin, The construction of global attractors, Proc. Amer. Math. Soc., 110 (1990), 523-525.  doi: 10.1090/S0002-9939-1990-1023342-1.  Google Scholar

[16]

M. Benedicks and L.-S. Young, Sinaǐ-Bowen-Ruelle measures for certain Hénon maps, Invent. Math., 112 (1993), 541-576.  doi: 10.1007/BF01232446.  Google Scholar

[17]

P. Billingsley, Convergence of Probability Measures, Second edition. Wiley Series in Probability and Statistics: Probability and Statistics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962.  Google Scholar

[18]

P. BoylandA. de Carvalho and T. Hall, Inverse limits as attractors in parameterized families, Bull. London Math. Soc., 45 (2013), 1075-1085.  doi: 10.1112/blms/bdt032.  Google Scholar

[19]

P. Boyland, A. de Carvalho and T. Hall, Natural extensions of unimodal maps: Virtual sphere homeomorphisms and prime ends of basin boundaries, arXiv: 1704.06624v3 [math.DS]. Google Scholar

[20]

M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc., 11 (1960), 478-483.  doi: 10.1090/S0002-9939-1960-0115157-4.  Google Scholar

[21]

H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topology Appl., 96 (1999), 191-208.  doi: 10.1016/S0166-8641(98)00054-6.  Google Scholar

[22]

A. Fathi, Structure of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. Sci. École Norm. Sup.(4), 13 (1980), 45–93. doi: 10.24033/asens.1377.  Google Scholar

[23]

J. KennedyB. E. Raines and D. R. Stockman, Basins of measures on inverse limit spaces for the induced homeomorphism, Ergodic Theory Dynam. Systems, 30 (2010), 1119-1130.  doi: 10.1017/S0143385709000388.  Google Scholar

[24]

J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math.(2), 42 (1941), 874-920.  doi: 10.2307/1968772.  Google Scholar

[25]

B. E. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math., 182 (2004), 241-268.  doi: 10.4064/fm182-3-4.  Google Scholar

[26]

C. H. Vásquez, Statistical stability for diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems, 27 (2007), 253-283.  doi: 10.1017/S0143385706000721.  Google Scholar

[27]

M. Viana, Lecture Notes on Attractors and Physical Measures, Monografís del Instituto de Matemática y Ciencias Afines, 8. Instituto de Matemática y Ciencias Afines, IMCA, Lima, 1999.  Google Scholar

[28]

Q. D. Wang and L.-S. Young, Strange attractors with one direction of instability, Comm. Math. Phys., 218 (2001), 1-97.  doi: 10.1007/s002200100379.  Google Scholar

[29]

L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Statist. Phys., 108 (2002), 733-754.  doi: 10.1023/A:1019762724717.  Google Scholar

[1]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[2]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[3]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[8]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[9]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[12]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[13]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2020  doi: 10.3934/mfc.2021001

[14]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[15]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[16]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[17]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[18]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[19]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[20]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]