• Previous Article
    Pointwise properties of $ L^p $-viscosity solutions of uniformly elliptic equations with quadratically growing gradient terms
  • DCDS Home
  • This Issue
  • Next Article
    Statistical stability for Barge-Martin attractors derived from tent maps
May  2020, 40(5): 2917-2944. doi: 10.3934/dcds.2020155

Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems

Mathematics Department, Faculty of Sciences, University of Monastir, 5019 Monastir, Tunisia

Received  August 2019 Published  March 2020

Fund Project: The first and second authors are supported by LR 18 ES 15

In the present paper, we deal with a new continuous and compact embedding theorems for the fractional Orlicz-Sobolev spaces, also, we study the existence of infinitely many nontrivial solutions for a class of non-local fractional Orlicz-Sobolev Schrödinger equations whose simplest prototype is
$ (-\triangle)^{s}_{m}u+V(x)m(u) = f(x,u),\ x\in\mathbb{R}^{d}, $
where
$ 0<s<1 $
,
$ d\geq2 $
and
$ (-\triangle)^{s}_{m} $
is the fractional
$ M $
-Laplace operator. The proof is based on the variant Fountain theorem established by Zou.
Citation: Sabri Bahrouni, Hichem Ounaies. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2917-2944. doi: 10.3934/dcds.2020155
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975. 
[2]

C. O. AlvesG. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44 (2014), 435-456.  doi: 10.12775/TMNA.2014.055.

[3]

V. Ambrosio, Multiple solutions for a fractional $p$-Laplacian equation with sign-changing potential, Electron. J. Differential Equations, 2016 (2016), 12 pp.

[4]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^{d}$., J. Differ. Equ., 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.

[5]

E. Azroul, A. Benkirane and M. Srati, Introduction to fractional Orlicz-Sobolev spaces, arXiv: 1807.11753.

[6]

A. BahrouniH. Ounaies and V. D. Rǎdulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 445-465.  doi: 10.1017/S0308210513001169.

[7]

A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.  doi: 10.3934/cpaa.2017011.

[8]

A. Bahrouni, S. Bahrouni and M. Q. Xiang, On a class of nonvariational problems in fractional Orlicz-Sobolev spaces, Nonlinear Analysis, 190 (2020), 111595, 13 pp. doi: 10.1016/j.na.2019.111595.

[9]

S. Bahrouni, H. Ounaies and L. S. Tavares, Basic results of fractional Orlicz-Sobolev space and applications to non-local problems, Topol. Methods Nonlinear Anal., accepted for publication.

[10]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in $\mathbb{R}^{d}$, Comm. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[11]

G. M. Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equatioans, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.

[12]

G. BonannoG. Molica Bisci and V. Rǎdulescu, Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces, C. R. Math. Acad. Sci. Paris, 349 (2011), 263-268.  doi: 10.1016/j.crma.2011.02.009.

[13]

J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, Journal of Functional Analysis, 277 (2019), 333-367.  doi: 10.1016/j.jfa.2019.04.003.

[14]

J. F. Bonder, M. P. LLanos and A. M. Salort, A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians, arXiv: 1807.01669.

[15]

J. F. Bonder and A. M. Salort, Magnetic Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333–367, arXiv: 1812.05998. doi: 10.1016/j.jfa.2019.04.003.

[16]

X. J. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 54 (2013), 061504, 10 pp. doi: 10.1063/1.4809933.

[17]

Ph. ClémentM. García-HuidobroR. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.  doi: 10.1007/s005260050002.

[18]

Ph. ClémentB. de PagterG. Sweers and F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1 (2004), 241-267.  doi: 10.1007/s00009-004-0014-6.

[19]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$, Lecture Notes, Scuola Normale Superiore di Pisa, 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.

[20]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[21]

N. FukagaiM. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbb{R}^{d}$, Funkcialaj Ekvacioj, 49 (2006), 235-267.  doi: 10.1619/fesi.49.235.

[22]

M. García-HuidobroV. K. LeR. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differ. Equat. Appl., 6 (1999), 207-225.  doi: 10.1007/s000300050073.

[23]

F. Gazzola and V. Rǎdulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in $\mathbb{R}^{d}$, Differ. Integral Equ., 13 (2000), 47-60. 

[24]

J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., 190 (1974), 163-205.  doi: 10.1090/S0002-9947-1974-0342854-2.

[25]

M. A. Krasnosels'kiǐ and J. B. Rutic'kii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd, Groningen, 1961.

[26]

A. Kufner, O. John and S. Fučik, Function Spaces, Noordhoff International Publishing, Leyden, Academia, Prague, 1977.

[27]

J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math., 8 (1958), 459-466.  doi: 10.2140/pjm.1958.8.459.

[28]

M. Mihǎilescu and V. Rǎdulescu, Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris., 346 (2008), 401-406.  doi: 10.1016/j.crma.2008.02.020.

[29]

M. Mihǎilescu and V. Rǎdulescu, Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330 (2007), 416-432.  doi: 10.1016/j.jmaa.2006.07.082.

[30]

M. Mihǎilescu and V. Rǎdulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier, 58 (2008), 2087-2111.  doi: 10.5802/aif.2407.

[31] G. Molica BisciV. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
[32]

P. de. Nápoli, J. F. Bonder and A. M. Salort, A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces, arXiv: 1903.03190.

[33]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[34]

M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146. Marcel Dekker, Inc., New York, 1991.

[35]

A. M. Salort, Eigenvalues and minimizers for a non-standard growth non-local operator, Journal of Differential Equations, (2019). doi: 10.1016/j.jde.2019.11.027.

[36]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.

[37]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Sys., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.

[38]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.

[39]

C. Torres, On superlinear fractional $p$-Laplacian in $\mathbb{R}^{d}$, (2014), arXiv: 1412.3392.

[40]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[41]

Q. Y. Zhang and Q. Wang, Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl., 389 (2012), 511-518.  doi: 10.1016/j.jmaa.2011.12.003.

[42]

Q. Y. Zhang and B. Xu, Multiplicity of solutions for a class of semilinear Schrödinger equations with sign-changing potential, J. Math. Anal. Appl., 377 (2011), 834-840.  doi: 10.1016/j.jmaa.2010.11.059.

[43]

W. M. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.  doi: 10.1007/s002290170032.

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975. 
[2]

C. O. AlvesG. M. Figueiredo and J. A. Santos, Strauss and Lions type results for a class of Orlicz-Sobolev spaces and applications, Topol. Methods Nonlinear Anal., 44 (2014), 435-456.  doi: 10.12775/TMNA.2014.055.

[3]

V. Ambrosio, Multiple solutions for a fractional $p$-Laplacian equation with sign-changing potential, Electron. J. Differential Equations, 2016 (2016), 12 pp.

[4]

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in $\mathbb{R}^{d}$., J. Differ. Equ., 255 (2013), 2340-2362.  doi: 10.1016/j.jde.2013.06.016.

[5]

E. Azroul, A. Benkirane and M. Srati, Introduction to fractional Orlicz-Sobolev spaces, arXiv: 1807.11753.

[6]

A. BahrouniH. Ounaies and V. D. Rǎdulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 445-465.  doi: 10.1017/S0308210513001169.

[7]

A. Bahrouni, Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.  doi: 10.3934/cpaa.2017011.

[8]

A. Bahrouni, S. Bahrouni and M. Q. Xiang, On a class of nonvariational problems in fractional Orlicz-Sobolev spaces, Nonlinear Analysis, 190 (2020), 111595, 13 pp. doi: 10.1016/j.na.2019.111595.

[9]

S. Bahrouni, H. Ounaies and L. S. Tavares, Basic results of fractional Orlicz-Sobolev space and applications to non-local problems, Topol. Methods Nonlinear Anal., accepted for publication.

[10]

T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems in $\mathbb{R}^{d}$, Comm. Partial Differ. Equ., 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[11]

G. M. Bisci and V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equatioans, 54 (2015), 2985-3008.  doi: 10.1007/s00526-015-0891-5.

[12]

G. BonannoG. Molica Bisci and V. Rǎdulescu, Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces, C. R. Math. Acad. Sci. Paris, 349 (2011), 263-268.  doi: 10.1016/j.crma.2011.02.009.

[13]

J. Fernández Bonder and A. M. Salort, Fractional order Orlicz-Sobolev spaces, Journal of Functional Analysis, 277 (2019), 333-367.  doi: 10.1016/j.jfa.2019.04.003.

[14]

J. F. Bonder, M. P. LLanos and A. M. Salort, A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians, arXiv: 1807.01669.

[15]

J. F. Bonder and A. M. Salort, Magnetic Fractional order Orlicz-Sobolev spaces, J. Funct. Anal., 277 (2019), 333–367, arXiv: 1812.05998. doi: 10.1016/j.jfa.2019.04.003.

[16]

X. J. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys., 54 (2013), 061504, 10 pp. doi: 10.1063/1.4809933.

[17]

Ph. ClémentM. García-HuidobroR. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11 (2000), 33-62.  doi: 10.1007/s005260050002.

[18]

Ph. ClémentB. de PagterG. Sweers and F. de Thélin, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1 (2004), 241-267.  doi: 10.1007/s00009-004-0014-6.

[19]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$, Lecture Notes, Scuola Normale Superiore di Pisa, 15. Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.

[20]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.

[21]

N. FukagaiM. Ito and K. Narukawa, Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on $\mathbb{R}^{d}$, Funkcialaj Ekvacioj, 49 (2006), 235-267.  doi: 10.1619/fesi.49.235.

[22]

M. García-HuidobroV. K. LeR. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting, Nonlinear Differ. Equat. Appl., 6 (1999), 207-225.  doi: 10.1007/s000300050073.

[23]

F. Gazzola and V. Rǎdulescu, A nonsmooth critical point theory approach to some nonlinear elliptic equations in $\mathbb{R}^{d}$, Differ. Integral Equ., 13 (2000), 47-60. 

[24]

J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., 190 (1974), 163-205.  doi: 10.1090/S0002-9947-1974-0342854-2.

[25]

M. A. Krasnosels'kiǐ and J. B. Rutic'kii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd, Groningen, 1961.

[26]

A. Kufner, O. John and S. Fučik, Function Spaces, Noordhoff International Publishing, Leyden, Academia, Prague, 1977.

[27]

J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math., 8 (1958), 459-466.  doi: 10.2140/pjm.1958.8.459.

[28]

M. Mihǎilescu and V. Rǎdulescu, Nonhomogeneous Neumann problems in Orlicz-Sobolev spaces, C. R. Acad. Sci. Paris., 346 (2008), 401-406.  doi: 10.1016/j.crma.2008.02.020.

[29]

M. Mihǎilescu and V. Rǎdulescu, Existence and multiplicity of solutions for a quasilinear nonhomogeneous problems: An Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330 (2007), 416-432.  doi: 10.1016/j.jmaa.2006.07.082.

[30]

M. Mihǎilescu and V. Rǎdulescu, Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces, Ann. Inst. Fourier, 58 (2008), 2087-2111.  doi: 10.5802/aif.2407.

[31] G. Molica BisciV. D. Rǎdulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, 162. Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316282397.
[32]

P. de. Nápoli, J. F. Bonder and A. M. Salort, A Pólya-Szegö principle for general fractional Orlicz-Sobolev spaces, arXiv: 1903.03190.

[33]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[34]

M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146. Marcel Dekker, Inc., New York, 1991.

[35]

A. M. Salort, Eigenvalues and minimizers for a non-standard growth non-local operator, Journal of Differential Equations, (2019). doi: 10.1016/j.jde.2019.11.027.

[36]

R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.  doi: 10.1016/j.jmaa.2011.12.032.

[37]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Sys., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.

[38]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.

[39]

C. Torres, On superlinear fractional $p$-Laplacian in $\mathbb{R}^{d}$, (2014), arXiv: 1412.3392.

[40]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[41]

Q. Y. Zhang and Q. Wang, Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl., 389 (2012), 511-518.  doi: 10.1016/j.jmaa.2011.12.003.

[42]

Q. Y. Zhang and B. Xu, Multiplicity of solutions for a class of semilinear Schrödinger equations with sign-changing potential, J. Math. Anal. Appl., 377 (2011), 834-840.  doi: 10.1016/j.jmaa.2010.11.059.

[43]

W. M. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343-358.  doi: 10.1007/s002290170032.

[1]

Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064

[2]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[3]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[4]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[5]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[6]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[7]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[8]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[9]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[10]

Vy Khoi Le. On the existence of nontrivial solutions of inequalities in Orlicz-Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 809-818. doi: 10.3934/dcdss.2012.5.809

[11]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[12]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[13]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[14]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[15]

Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018

[16]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[17]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[18]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[19]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[20]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (275)
  • HTML views (61)
  • Cited by (4)

Other articles
by authors

[Back to Top]