• Previous Article
    Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data
  • DCDS Home
  • This Issue
  • Next Article
    Pointwise properties of $ L^p $-viscosity solutions of uniformly elliptic equations with quadratically growing gradient terms
May  2020, 40(5): 2963-2986. doi: 10.3934/dcds.2020157

General initial data for a class of parabolic equations including the curve shortening problem

1. 

The Chinese University of Hong Kong, Hong Kong

2. 

Northern Illinois University, DeKalb, IL60115, U.S.A

* Corresponding author: Kai-Seng Chou

Received  September 2019 Revised  November 2019 Published  March 2020

The Cauchy problem for a class of non-uniformly parabolic equations including (4) is studied for initial data with less regularity. When $ m\in(1,2] $, it is shown that there exists a smooth solution for $ t>0 $ when the initial data belongs to $ L_{\text{loc}}^p, p>1 $. When $ m>2 $, the same results holds when the initial data belongs to $ W_{\text{loc}}^{1,p}, p\geq m-1 $. An example is displayed to show that a smooth solution may not exist when the initial data is merely in $ L^p_{\text{loc}}, p>1 $. Solvability of the weak solution is also studied.

Citation: Kai-Seng Chou, Ying-Chuen Kwong. General initial data for a class of parabolic equations including the curve shortening problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2963-2986. doi: 10.3934/dcds.2020157
References:
[1]

S. Angenent, Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature, Ann. of Math., 132 (1990), 451-483.  doi: 10.2307/1971426.  Google Scholar

[2]

S. Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions, Ann. of Math., 133 (1991), 171-215.  doi: 10.2307/2944327.  Google Scholar

[3]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 25 (1971), 221-228.   Google Scholar

[4]

D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc, 280 (1983), 351-366.  doi: 10.1090/S0002-9947-1983-0712265-1.  Google Scholar

[5]

Ph. BenilanM. G. Crandall and M. Pierre, Solutions of the porous medium equationin $\mathbb R^n$ under optimal conditions on initial values, Indiana Univ. Math J., 33 (1984), 51-87.  doi: 10.1512/iumj.1984.33.33003.  Google Scholar

[6]

Y. G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.  doi: 10.4310/jdg/1214446564.  Google Scholar

[7]

K. S. Chou and Y. C. Kwong, On quasilinear parabolic equations which admit global solutions for initial data with unrestricted growth, Calc. Var. Partial Differential Equations, 12 (2001), 281-315.  doi: 10.1007/PL00009915.  Google Scholar

[8]

K. S. Chou and X. P. Zhu, The Curve Shortening Problem, Chapman and Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420035704.  Google Scholar

[9]

B. E. Dahlberg and C. E. Kenig, Non-negative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders, J. Amer. Soc., 1 (1988), 401-412.  doi: 10.1090/S0894-0347-1988-0928264-9.  Google Scholar

[10]

E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[11]

K. Ecker, An interior gradient bound for solutions of equations of capillary type, Arch. Rational Mech. Anal., 92 (1986), 137-151.  doi: 10.1007/BF00251254.  Google Scholar

[12]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105 (1991), 547-569.  doi: 10.1007/BF01232278.  Google Scholar

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geom., 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.  Google Scholar

[14]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc., 330 (1992), 321-332.  doi: 10.1090/S0002-9947-1992-1068927-8.  Google Scholar

[15]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, III, J. Geom. Anal., 2 (1992), 121-150.  doi: 10.1007/BF02921385.  Google Scholar

[16]

A. Friedman, Partial Differential Equations, Holt, Rinehart, Winston, 1969.  Google Scholar

[17]

M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.  doi: 10.4310/jdg/1214439902.  Google Scholar

[18]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature, J. Differential Equations, 36 (1980), 139-172.  doi: 10.1016/0022-0396(80)90081-9.  Google Scholar

[19]

Y. Giga, Interior derivative blow-up for quailinear parabolic equations, Discrete Contin. Dynam. Systems, 1 (1995), 449-461.  doi: 10.3934/dcds.1995.1.449.  Google Scholar

[20]

M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.  doi: 10.4310/jdg/1214441371.  Google Scholar

[21]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, , vol. 23, Translations of Mathematical Monographs, American Mathematical Society, Providence, 1968.  Google Scholar

[22]

G. Leoni, A First Course in Sobolev Spaces, American Mathematical Society, Providence, 2009. doi: 10.1090/gsm/105.  Google Scholar

[23]

X.-J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[24]

D. V. Widder, Positive temperatures on an infintie rod, Trans. Amer. Math. Soc., 55 (1944), 85-95.  doi: 10.1090/S0002-9947-1944-0009795-2.  Google Scholar

[25]

Z. Wu, J. Yin, H. Li and J. Zhao, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001. doi: 10.1142/4782.  Google Scholar

[26]

J. Zhao, On the Cauchy problem and initial traces for evolution p-Laplacian equation with strongly nonlinear sources, J. Differential Equations, 121 (1995), 329-383.  doi: 10.1006/jdeq.1995.1132.  Google Scholar

show all references

References:
[1]

S. Angenent, Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature, Ann. of Math., 132 (1990), 451-483.  doi: 10.2307/1971426.  Google Scholar

[2]

S. Angenent, Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions, Ann. of Math., 133 (1991), 171-215.  doi: 10.2307/2944327.  Google Scholar

[3]

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 25 (1971), 221-228.   Google Scholar

[4]

D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc, 280 (1983), 351-366.  doi: 10.1090/S0002-9947-1983-0712265-1.  Google Scholar

[5]

Ph. BenilanM. G. Crandall and M. Pierre, Solutions of the porous medium equationin $\mathbb R^n$ under optimal conditions on initial values, Indiana Univ. Math J., 33 (1984), 51-87.  doi: 10.1512/iumj.1984.33.33003.  Google Scholar

[6]

Y. G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.  doi: 10.4310/jdg/1214446564.  Google Scholar

[7]

K. S. Chou and Y. C. Kwong, On quasilinear parabolic equations which admit global solutions for initial data with unrestricted growth, Calc. Var. Partial Differential Equations, 12 (2001), 281-315.  doi: 10.1007/PL00009915.  Google Scholar

[8]

K. S. Chou and X. P. Zhu, The Curve Shortening Problem, Chapman and Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420035704.  Google Scholar

[9]

B. E. Dahlberg and C. E. Kenig, Non-negative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders, J. Amer. Soc., 1 (1988), 401-412.  doi: 10.1090/S0894-0347-1988-0928264-9.  Google Scholar

[10]

E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[11]

K. Ecker, An interior gradient bound for solutions of equations of capillary type, Arch. Rational Mech. Anal., 92 (1986), 137-151.  doi: 10.1007/BF00251254.  Google Scholar

[12]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105 (1991), 547-569.  doi: 10.1007/BF01232278.  Google Scholar

[13]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geom., 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.  Google Scholar

[14]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, II, Trans. Amer. Math. Soc., 330 (1992), 321-332.  doi: 10.1090/S0002-9947-1992-1068927-8.  Google Scholar

[15]

L. C. Evans and J. Spruck, Motion of level sets by mean curvature, III, J. Geom. Anal., 2 (1992), 121-150.  doi: 10.1007/BF02921385.  Google Scholar

[16]

A. Friedman, Partial Differential Equations, Holt, Rinehart, Winston, 1969.  Google Scholar

[17]

M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom., 23 (1986), 69-96.  doi: 10.4310/jdg/1214439902.  Google Scholar

[18]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature, J. Differential Equations, 36 (1980), 139-172.  doi: 10.1016/0022-0396(80)90081-9.  Google Scholar

[19]

Y. Giga, Interior derivative blow-up for quailinear parabolic equations, Discrete Contin. Dynam. Systems, 1 (1995), 449-461.  doi: 10.3934/dcds.1995.1.449.  Google Scholar

[20]

M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.  doi: 10.4310/jdg/1214441371.  Google Scholar

[21]

O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, , vol. 23, Translations of Mathematical Monographs, American Mathematical Society, Providence, 1968.  Google Scholar

[22]

G. Leoni, A First Course in Sobolev Spaces, American Mathematical Society, Providence, 2009. doi: 10.1090/gsm/105.  Google Scholar

[23]

X.-J. Wang, Interior gradient estimates for mean curvature equations, Math. Z., 228 (1998), 73-81.  doi: 10.1007/PL00004604.  Google Scholar

[24]

D. V. Widder, Positive temperatures on an infintie rod, Trans. Amer. Math. Soc., 55 (1944), 85-95.  doi: 10.1090/S0002-9947-1944-0009795-2.  Google Scholar

[25]

Z. Wu, J. Yin, H. Li and J. Zhao, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001. doi: 10.1142/4782.  Google Scholar

[26]

J. Zhao, On the Cauchy problem and initial traces for evolution p-Laplacian equation with strongly nonlinear sources, J. Differential Equations, 121 (1995), 329-383.  doi: 10.1006/jdeq.1995.1132.  Google Scholar

[1]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[2]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[5]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[6]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[9]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[10]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[11]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[12]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[13]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[14]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[15]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[16]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (77)
  • HTML views (74)
  • Cited by (0)

Other articles
by authors

[Back to Top]