• Previous Article
    Dynamical systems with a prescribed globally bp-attracting set and applications to conservative dynamics
  • DCDS Home
  • This Issue
  • Next Article
    General initial data for a class of parabolic equations including the curve shortening problem
May  2020, 40(5): 2987-3011. doi: 10.3934/dcds.2020158

Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data

1. 

School of Mathematics,, Shanghai University of Finance and Economics, Shanghai 200433, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

* Corresponding author: Keyan Wang

Published  March 2020

Fund Project: The first author is supported by NSFC grant No. 11971290.

In this paper, we prove that for the ill-prepared initial data of the form
$ \begin{equation} \nonumber u_0^\epsilon(x) = (v_0^h(x_\epsilon), \epsilon^{-1}v_0^3(x_\epsilon))^T,\quad x_\epsilon = (x_h, \epsilon x_3)^T, \end{equation} $
the Cauchy problem of the incompressible Navier-Stokes equations on
$ \mathbb{R}^3 $
is locally well-posed for all
$ \epsilon > 0 $
, provided that the initial velocity profile
$ v_0 $
is analytic in
$ x_3 $
but independent of
$ \epsilon $
.
Citation: Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Ann. Sci. École Norm. Sup. (4), 14 (1981), 209-246.  doi: 10.24033/asens.1404.  Google Scholar

[3]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, Journal of Functional Analysis, 255 (2008), 2233-2247.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[4]

M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaries des équations de Navier-Stokes, Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, (1994), 12 pp. doi: 10.1108/09533239410052824.  Google Scholar

[5]

J.-Y. Chemin, Le syst\`{e}me de Navier-Stokes incopressible soixante dix ans apr\`{e}s Jean Leray, Actes des Journées Mathématiques á la Mémoire de Jean Leray, Sémin. Congr., Soc. Math. France, Paris, 9 (2004), 99-123.   Google Scholar

[6]

J.-Y. Chemin, Theorémés d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (2009), 27-50.  doi: 10.1007/BF02791256.  Google Scholar

[7]

J.-Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes euqations, slowly varying in one direction, Transactions of the American Mathematical Society, 362 (2010), 2859-2873.  doi: 10.1090/S0002-9947-10-04744-6.  Google Scholar

[8]

J.-Y. CheminI. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Annals of Mathematics, 173 (2011), 983-1012.  doi: 10.4007/annals.2011.173.2.9.  Google Scholar

[9]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[10]

Y. K. Chen and B. Han, Global regularity to the Navier-Stokes equations for a class of large initial data, Math. Model. Anal., 23 (2018), 262-286.  doi: 10.3846/mma.2018.017.  Google Scholar

[11]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, 9 (2004), 353-386.   Google Scholar

[12]

D. Y. Fang and B. Han, Global solution for the generalized anisotropic Navier-Stokes equations with Large data, Math. Model. Anal., 20 (2015), 205-231.  doi: 10.3846/13926292.2015.1020894.  Google Scholar

[13]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[14]

G. L. GuiJ. C. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable, Journal of Functional Analysis, 261 (2011), 3181-3210.  doi: 10.1016/j.jfa.2011.07.026.  Google Scholar

[15]

B. Han and Y. K. Chen, Global reqularity to the 3D incompressible Navier-Stokes equations with large initial data, Mathematical Modelling and Analysis, 23 (2018), 262-286.  doi: 10.3846/mma.2018.017.  Google Scholar

[16]

T. Y. HouZ. Lei and C. M. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008), 1622-1637.  doi: 10.1080/03605300802108057.  Google Scholar

[17]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces, Revista Matematica Ibero-Americana, 15 (1999), 1-36.  doi: 10.4171/RMI/248.  Google Scholar

[18]

D. IftimieG. Raugel and G. R. Sell, Navier-Stokes equations in thin 3D domains with the Navier boundary conditions, Indiana University Mathematical Journal, 56 (2007), 1083-1156.  doi: 10.1512/iumj.2007.56.2834.  Google Scholar

[19]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $\mathbb{R}^m$ with applications to weak solutions, Mathematische Zeitschrift, 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[20]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Maththematics, 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[21]

Z. Lei and F. H. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math, 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.  Google Scholar

[22]

Z. LeiF.-H. Lin and Y. Zhou, Structure of Helicity and global solutions of incompressible Navier-Stokes equation, Arch. Ration. Mech. Anal., 218 (2015), 1417-1430.  doi: 10.1007/s00205-015-0884-8.  Google Scholar

[23]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Mathematica, 63 (1933), 193-248.   Google Scholar

[24]

A. S. Mahalov and V. P. Nicolaenko, Global solvability of three dimensional Navier-Stokes equations with Uniformly high initial vorticity, Uspekhi Mat. Nauk, 58 (2003), 79-110.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[25]

M. Paicu and Z. F. Zhang, Global regularity for the Navier-Stokes equations with large, slowly varying iitial data in the vertical direction, Analysis of Partial Differential equation, 4 (2011), 95-113.   Google Scholar

[26]

G. Raugel and G. R. Sell, Navier-Stokes equations on thin $3$D domains. I. Global attractors and global regularity of solutions, Journal of the American Mathematical Society, 6 (1993), 503-568.  doi: 10.2307/2152776.  Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Ann. Sci. École Norm. Sup. (4), 14 (1981), 209-246.  doi: 10.24033/asens.1404.  Google Scholar

[3]

J. Bourgain and N. Pavlović, Ill-posedness of the Navier-Stokes equations in a critical space in 3D, Journal of Functional Analysis, 255 (2008), 2233-2247.  doi: 10.1016/j.jfa.2008.07.008.  Google Scholar

[4]

M. Cannone, Y. Meyer and F. Planchon, Solutions autosimilaries des équations de Navier-Stokes, Séminaire sur les Équations aux Dérivées Partielles, École Polytech., Palaiseau, (1994), 12 pp. doi: 10.1108/09533239410052824.  Google Scholar

[5]

J.-Y. Chemin, Le syst\`{e}me de Navier-Stokes incopressible soixante dix ans apr\`{e}s Jean Leray, Actes des Journées Mathématiques á la Mémoire de Jean Leray, Sémin. Congr., Soc. Math. France, Paris, 9 (2004), 99-123.   Google Scholar

[6]

J.-Y. Chemin, Theorémés d'unicité pour le systéme de Navier-Stokes tridimensionnel, J. Anal. Math., 77 (2009), 27-50.  doi: 10.1007/BF02791256.  Google Scholar

[7]

J.-Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes euqations, slowly varying in one direction, Transactions of the American Mathematical Society, 362 (2010), 2859-2873.  doi: 10.1090/S0002-9947-10-04744-6.  Google Scholar

[8]

J.-Y. CheminI. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Annals of Mathematics, 173 (2011), 983-1012.  doi: 10.4007/annals.2011.173.2.9.  Google Scholar

[9]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-328.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[10]

Y. K. Chen and B. Han, Global regularity to the Navier-Stokes equations for a class of large initial data, Math. Model. Anal., 23 (2018), 262-286.  doi: 10.3846/mma.2018.017.  Google Scholar

[11]

R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Advances in Differential Equations, 9 (2004), 353-386.   Google Scholar

[12]

D. Y. Fang and B. Han, Global solution for the generalized anisotropic Navier-Stokes equations with Large data, Math. Model. Anal., 20 (2015), 205-231.  doi: 10.3846/13926292.2015.1020894.  Google Scholar

[13]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I, Archive for Rational Mechanics and Analysis, 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[14]

G. L. GuiJ. C. Huang and P. Zhang, Large global solutions to 3-D inhomogeneous Navier-Stokes equations slowly varying in one variable, Journal of Functional Analysis, 261 (2011), 3181-3210.  doi: 10.1016/j.jfa.2011.07.026.  Google Scholar

[15]

B. Han and Y. K. Chen, Global reqularity to the 3D incompressible Navier-Stokes equations with large initial data, Mathematical Modelling and Analysis, 23 (2018), 262-286.  doi: 10.3846/mma.2018.017.  Google Scholar

[16]

T. Y. HouZ. Lei and C. M. Li, Global regularity of the 3D axi-symmetric Navier-Stokes equations with anisotropic data, Comm. Partial Differential Equations, 33 (2008), 1622-1637.  doi: 10.1080/03605300802108057.  Google Scholar

[17]

D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces, Revista Matematica Ibero-Americana, 15 (1999), 1-36.  doi: 10.4171/RMI/248.  Google Scholar

[18]

D. IftimieG. Raugel and G. R. Sell, Navier-Stokes equations in thin 3D domains with the Navier boundary conditions, Indiana University Mathematical Journal, 56 (2007), 1083-1156.  doi: 10.1512/iumj.2007.56.2834.  Google Scholar

[19]

T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $\mathbb{R}^m$ with applications to weak solutions, Mathematische Zeitschrift, 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[20]

H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Maththematics, 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[21]

Z. Lei and F. H. Lin, Global mild solutions of Navier-Stokes equations, Comm. Pure Appl. Math, 64 (2011), 1297-1304.  doi: 10.1002/cpa.20361.  Google Scholar

[22]

Z. LeiF.-H. Lin and Y. Zhou, Structure of Helicity and global solutions of incompressible Navier-Stokes equation, Arch. Ration. Mech. Anal., 218 (2015), 1417-1430.  doi: 10.1007/s00205-015-0884-8.  Google Scholar

[23]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Mathematica, 63 (1933), 193-248.   Google Scholar

[24]

A. S. Mahalov and V. P. Nicolaenko, Global solvability of three dimensional Navier-Stokes equations with Uniformly high initial vorticity, Uspekhi Mat. Nauk, 58 (2003), 79-110.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[25]

M. Paicu and Z. F. Zhang, Global regularity for the Navier-Stokes equations with large, slowly varying iitial data in the vertical direction, Analysis of Partial Differential equation, 4 (2011), 95-113.   Google Scholar

[26]

G. Raugel and G. R. Sell, Navier-Stokes equations on thin $3$D domains. I. Global attractors and global regularity of solutions, Journal of the American Mathematical Society, 6 (1993), 503-568.  doi: 10.2307/2152776.  Google Scholar

[1]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[2]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[3]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[4]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[5]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[6]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[7]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020142

[8]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[9]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[10]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[11]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[12]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[13]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[14]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[15]

Daoyuan Fang, Bin Han, Matthias Hieber. Local and global existence results for the Navier-Stokes equations in the rotational framework. Communications on Pure & Applied Analysis, 2015, 14 (2) : 609-622. doi: 10.3934/cpaa.2015.14.609

[16]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[17]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[18]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[19]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[20]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (71)
  • HTML views (70)
  • Cited by (0)

Other articles
by authors

[Back to Top]