May  2020, 40(5): 3013-3030. doi: 10.3934/dcds.2020159

Dynamical systems with a prescribed globally bp-attracting set and applications to conservative dynamics

West University of Timişoara, Faculty of Mathematics and Computer Science, Department of Mathematics, Blvd. Vasile Pȃrvan, No. 4, 300223–Timişoara, Romȃnia

Received  November 2019 Revised  December 2019 Published  March 2020

Given an arbitrary fixed closed subset $ \mathcal{C}\subset\mathbb{R}^n $, we provide an explicit method to construct a dynamical system which admits the regular part of $ \mathcal{C} $ as globally bp-attracting set, i.e. a closed and invariant set which attracts every bounded positive orbit of the dynamical system. As application, we provide an explicit method of leafwise asymptotic bp-stabilization of the regular part of an a-priori given invariant set of a conservative system. The theoretical results are illustrated for the completely integrable case of the Rössler dynamical system.

Citation: Răzvan M. Tudoran. Dynamical systems with a prescribed globally bp-attracting set and applications to conservative dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (5) : 3013-3030. doi: 10.3934/dcds.2020159
References:
[1]

G.-I. BischiC. Mira and L. Gardini, Unbounded sets of attraction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1437-1469.  doi: 10.1142/S0218127400000980.  Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[3]

B. Günther and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc., 119 (1993), 321-329.  doi: 10.1090/S0002-9939-1993-1170545-4.  Google Scholar

[4]

B. Günther, Construction of differentiable flows with prescribed attractor, Topology Appl., 62 (1995), 87-91.  doi: 10.1016/0166-8641(94)00047-7.  Google Scholar

[5]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, 1988.  Google Scholar

[6]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38. SIAM, Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.  Google Scholar

[7]

J. M. Lee, Introduction to Smooth Manifolds, Second edition, Graduate Texts in Mathematics, 218. Springer, New York, 2013.  Google Scholar

[8]

T. S. RatiuR. M. TudoranL. SbanoE. Sousa Dias and G. Terra, Chapter II: A crash course in geometric mechanics, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 23-156.  doi: 10.1017/CBO9780511526367.003.  Google Scholar

[9] J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186. Cambridge University Press, Cambridge, 2011.   Google Scholar
[10]

R. M. Tudoran and A. G\^irban, On the completely integrable case of the Rössler system, J. Math. Phys., 53 (2012), 052701, 10 pp. doi: 10.1063/1.4708621.  Google Scholar

[11]

R. M. Tudoran, Affine distributions on Riemannian manifolds with applications to dissipative dynamics, J. Geom. Phys., 92 (2015), 55-68.  doi: 10.1016/j.geomphys.2015.01.017.  Google Scholar

[12]

R. M. Tudoran, Asymptotic bp-stabilization of a given closed invariant set of a smooth dynamical system, J. Differential Equations, 267 (2019), 3768-3777.  doi: 10.1016/j.jde.2019.04.013.  Google Scholar

show all references

References:
[1]

G.-I. BischiC. Mira and L. Gardini, Unbounded sets of attraction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 1437-1469.  doi: 10.1142/S0218127400000980.  Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[3]

B. Günther and J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc., 119 (1993), 321-329.  doi: 10.1090/S0002-9939-1993-1170545-4.  Google Scholar

[4]

B. Günther, Construction of differentiable flows with prescribed attractor, Topology Appl., 62 (1995), 87-91.  doi: 10.1016/0166-8641(94)00047-7.  Google Scholar

[5]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, 1988.  Google Scholar

[6]

P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, 38. SIAM, Philadelphia, PA, 2002. doi: 10.1137/1.9780898719222.  Google Scholar

[7]

J. M. Lee, Introduction to Smooth Manifolds, Second edition, Graduate Texts in Mathematics, 218. Springer, New York, 2013.  Google Scholar

[8]

T. S. RatiuR. M. TudoranL. SbanoE. Sousa Dias and G. Terra, Chapter II: A crash course in geometric mechanics, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 23-156.  doi: 10.1017/CBO9780511526367.003.  Google Scholar

[9] J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186. Cambridge University Press, Cambridge, 2011.   Google Scholar
[10]

R. M. Tudoran and A. G\^irban, On the completely integrable case of the Rössler system, J. Math. Phys., 53 (2012), 052701, 10 pp. doi: 10.1063/1.4708621.  Google Scholar

[11]

R. M. Tudoran, Affine distributions on Riemannian manifolds with applications to dissipative dynamics, J. Geom. Phys., 92 (2015), 55-68.  doi: 10.1016/j.geomphys.2015.01.017.  Google Scholar

[12]

R. M. Tudoran, Asymptotic bp-stabilization of a given closed invariant set of a smooth dynamical system, J. Differential Equations, 267 (2019), 3768-3777.  doi: 10.1016/j.jde.2019.04.013.  Google Scholar

[1]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[2]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[5]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[6]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[9]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[10]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[11]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[12]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[13]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[14]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[15]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[16]

Charlotte Rodriguez. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021002

[17]

Sanmei Zhu, Jun-e Feng, Jianli Zhao. State feedback for set stabilization of Markovian jump Boolean control networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1591-1605. doi: 10.3934/dcdss.2020413

[18]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (62)
  • HTML views (127)
  • Cited by (0)

Other articles
by authors

[Back to Top]