December  2020, 40(12): 6681-6707. doi: 10.3934/dcds.2020162

Computer assisted proofs of two-dimensional attracting invariant tori for ODEs

1. 

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

2. 

Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA

* Corresponding author: maciej.capinski@agh.edu.pl

Received  May 2019 Revised  December 2019 Published  March 2020

Fund Project: The first author is supported by by the NCN grant 2018/29/B/ST1/00109. The work has been conducted during his visit to FAU sponsored by the Fulbright Foundation. The third author was partially supported by National Science Foundation grant DMS 1813501

This work studies existence and regularity questions for attracting invariant tori in three dimensional dissipative systems of ordinary differential equations. Our main result is a constructive method of computer assisted proof which applies to explicit problems in non-perturbative regimes. We obtain verifiable lower bounds on the regularity of the attractor in terms of the ratio of the expansion rate on the torus with the contraction rate near the torus. We consider separately two important cases of rotational and resonant tori. In the rotational case we obtain $ C^k $ lower bounds on the regularity of the embedding. In the resonant case we verify the existence of tori which are only $ C^0 $ and neither star-shaped nor Lipschitz.

Citation: Maciej J. Capiński, Emmanuel Fleurantin, J. D. Mireles James. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6681-6707. doi: 10.3934/dcds.2020162
References:
[1]

G. Alefeld, Inclusion methods for systems of nonlinear equations–the interval Newton method and modifications, in Topics in Validated Computations, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 7–26.  Google Scholar

[2]

G. Arioli and H. Koch, Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.  doi: 10.1016/j.na.2014.09.023.  Google Scholar

[3]

C. BaesensJ. GuckenheimerS. Kim and R. S. MacKay, Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.  doi: 10.1016/0167-2789(91)90155-3.  Google Scholar

[4]

T. BakriY. A. Kuznetsov and F. Verhulst, Torus bifurcations in a mechanical system, J. Dynam. Differential Equations, 27 (2015), 371-403.  doi: 10.1007/s10884-013-9339-9.  Google Scholar

[5]

T. Bakri and F. Verhulst, Bifurcations of quasi-periodic dynamics: Torus breakdown, Z. Angew. Math. Phys., 65 (2014), 1053-1076.  doi: 10.1007/s00033-013-0363-8.  Google Scholar

[6]

J. B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics, Notices Amer. Math. Soc., 62 (2015), 1057-1061.  doi: 10.1090/noti1276.  Google Scholar

[7]

H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., 19, Birkhäuser, Basel, 1996,423–447. doi: 10.1007/978-3-0348-7518-9_20.  Google Scholar

[8]

H. W. BroerH. M. Osinga and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys., 48 (1997), 480-524.  doi: 10.1007/s000330050044.  Google Scholar

[9]

M. Canadell and À. Haro, Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), 1829-1868.  doi: 10.1007/s00332-017-9388-z.  Google Scholar

[10]

M. Canadell and À. Haro, Computation of quasiperiodic normally hyperbolic invariant tori: Rigorous results, J. Nonlinear Sci., 27 (2017), 1869-1904.  doi: 10.1007/s00332-017-9389-y.  Google Scholar

[11]

M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser., 4, Springer, Cham, 2014, 85–94. doi: 10.1007/978-3-319-06953-1_9.  Google Scholar

[12]

M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at $L_2$ and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., 11 (2012), 1723-1753.  doi: 10.1137/110847366.  Google Scholar

[13]

M. J. Capiński and H. Kubica, Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions, preprint, arXiv: 1804.05580. Google Scholar

[14]

M. J. Capiński and P. Zgliczyński, Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., 30 (2011), 641-670.  doi: 10.3934/dcds.2011.30.641.  Google Scholar

[15]

M. J. Capiński and P. Zgliczyński, Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286.  doi: 10.1016/j.jde.2015.07.020.  Google Scholar

[16]

A. Celletti and L. Chierchia, Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys., 28 (1987), 2078-2086.  doi: 10.1063/1.527418.  Google Scholar

[17]

A. Celletti and L. Chierchia, A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl., 28, Springer, New York, 1991, 43–51. doi: 10.1007/978-1-4613-9092-3_6.  Google Scholar

[18]

M. Cercek, T. Gyergyek and M. Stanojevic, On the nonlinear dynamics of an instability in front of a positively biased electrode in a magnetized plasma, Nuclear Energy in Central Europe, Portoroz, Slovenia, 1996,531–538. Google Scholar

[19]

L. DieciJ. Lorenz and R. D. Russell, Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput., 12 (1991), 607-647.  doi: 10.1137/0912033.  Google Scholar

[20]

J.-P. Eckmann and P. Wittwer, A complete proof of the Feigenbaum conjectures, J. Statist. Phys., 46 (1987), 455-475.  doi: 10.1007/BF01013368.  Google Scholar

[21]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[22]

J.-Ll. FiguerasÀ. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.  doi: 10.1007/s10208-016-9339-3.  Google Scholar

[23]

J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math., 58 (1978), 5–15. doi: 10.21236/ADA039211.  Google Scholar

[24]

E. Fleurantin and J. D. Mireles-James, Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020). doi: 10.1016/j.cnsns.2020.105226.  Google Scholar

[25]

J. Gómez-Serrano, Computer-assisted proofs in PDE: A survey, SeMA J., 76 (2019), 459-484.  doi: 10.1007/s40324-019-00186-x.  Google Scholar

[26]

J. GuckenheimerK. Hoffman and W. Weckesser, The forced van der Pol equation. I. The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst., 2 (2003), 1-35.  doi: 10.1137/S1111111102404738.  Google Scholar

[27]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579.  doi: 10.1016/j.jde.2005.10.005.  Google Scholar

[28]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.  doi: 10.3934/dcdsb.2006.6.1261.  Google Scholar

[29]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207.  doi: 10.1137/050637327.  Google Scholar

[30]

À. Haro and A. Luque, A-posteriori KAM theory with optimal estimates for partially integrable systems, J. Differential Equations, 266 (2019), 1605-1674.  doi: 10.1016/j.jde.2018.08.003.  Google Scholar

[31]

M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1970,133–163.  Google Scholar

[32]

M. W. HirschC. C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.  doi: 10.1090/S0002-9904-1970-12537-X.  Google Scholar

[33]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/BFb0092042.  Google Scholar

[34]

K. Kaneko, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking. In connection with the coupled-logistic map, Progr. Theoret. Phys., 69 (1983), 1427-1442.  doi: 10.1143/PTP.69.1427.  Google Scholar

[35]

S.-H. KimR. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity, 2 (1989), 391-404.  doi: 10.1088/0951-7715/2/3/001.  Google Scholar

[36]

B. KrauskopfH. M. OsingaE. J. DoedelM. E. HendersonJ. GuckenheimerA. VladimirskyM. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.  doi: 10.1142/S0218127405012533.  Google Scholar

[37]

O. E. Lanford, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[38]

W. F. Langford, Numerical studies of torus bifurcations, in Numerical Methods for Bifurcation Problems, Internat. Schriftenreihe Numer. Math., 70, Birkhäuser, Basel, 1984,285–295. doi: 10.1007/978-3-0348-6256-1_19.  Google Scholar

[39]

J.-P. LessardJ. D. Mireles James and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.  doi: 10.1007/s10884-014-9367-0.  Google Scholar

[40]

R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys., 87 (1997), 211-249.  doi: 10.1007/BF02181486.  Google Scholar

[41]

R. de la Llave and D. Rana, Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 85-90.  doi: 10.1090/S0273-0979-1990-15848-3.  Google Scholar

[42]

R. de la Llave and D. Rana, Accurate strategies for K.A.M. bounds and their implementation, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl, 28, Springer, New York, 1991,127–146. doi: 10.1007/978-1-4613-9092-3_12.  Google Scholar

[43]

J. LlibreR. Martínez and C. Simó, Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem, J. Differential Equations, 58 (1985), 104-156.  doi: 10.1016/0022-0396(85)90024-5.  Google Scholar

[44]

T. MatsumotoL. O. Chua and R. Tokunaga, Chaos via torus breakdown, IEEE Trans. Circuits and Systems, 34 (1987), 240-253.  doi: 10.1109/TCS.1987.1086135.  Google Scholar

[45]

J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst., 12 (2013), 957-1006.  doi: 10.1137/12088224X.  Google Scholar

[46]

J. I. Neĭmark, Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR, 129 (1959), 736-739.   Google Scholar

[47]

H. M. Osinga, Computing global invariant manifolds: Techniques and applications, Proceedings of the International Congress of Mathematicians, 4, Kyung Moon Sa, Seoul, 2014, 1101–1123.  Google Scholar

[48]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701–710,754–762. Google Scholar

[49]

B. van der Pol, Frequency demultiplication, Nature, 120 (1927), 363-364.  doi: 10.1038/120363a0.  Google Scholar

[50]

R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph.D. thesis, New York University, 1964.  Google Scholar

[51]

C. Simó, Connection of invariant manifolds in the $n$-body problem, $n>3$, In Proceedings of the Sixth Conference of Portuguese and Spanish Mathematicians, Rev. Univ. Santander, 1979, 1257–1261.  Google Scholar

[52]

O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1225-1242.  doi: 10.1142/S0218127497000996.  Google Scholar

[53]

W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202.  doi: 10.1016/S0764-4442(99)80439-X.  Google Scholar

[54]

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.  doi: 10.1007/s002080010018.  Google Scholar

[55]

D. Wilczak and P. Zgliczyński, $C^n$ Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.   Google Scholar

[56]

D. WilczakS. Serrano and R. Barrio, Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: A computer-assisted proof, SIAM J. Appl. Dyn. Syst., 15 (2016), 356-390.  doi: 10.1137/15M1039201.  Google Scholar

[57]

P. Zgliczyński, $C^1$ Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.  doi: 10.1007/s102080010025.  Google Scholar

[58]

P. Zgliczyński, Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819.  doi: 10.1016/j.jde.2008.12.019.  Google Scholar

show all references

References:
[1]

G. Alefeld, Inclusion methods for systems of nonlinear equations–the interval Newton method and modifications, in Topics in Validated Computations, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 7–26.  Google Scholar

[2]

G. Arioli and H. Koch, Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.  doi: 10.1016/j.na.2014.09.023.  Google Scholar

[3]

C. BaesensJ. GuckenheimerS. Kim and R. S. MacKay, Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.  doi: 10.1016/0167-2789(91)90155-3.  Google Scholar

[4]

T. BakriY. A. Kuznetsov and F. Verhulst, Torus bifurcations in a mechanical system, J. Dynam. Differential Equations, 27 (2015), 371-403.  doi: 10.1007/s10884-013-9339-9.  Google Scholar

[5]

T. Bakri and F. Verhulst, Bifurcations of quasi-periodic dynamics: Torus breakdown, Z. Angew. Math. Phys., 65 (2014), 1053-1076.  doi: 10.1007/s00033-013-0363-8.  Google Scholar

[6]

J. B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics, Notices Amer. Math. Soc., 62 (2015), 1057-1061.  doi: 10.1090/noti1276.  Google Scholar

[7]

H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., 19, Birkhäuser, Basel, 1996,423–447. doi: 10.1007/978-3-0348-7518-9_20.  Google Scholar

[8]

H. W. BroerH. M. Osinga and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys., 48 (1997), 480-524.  doi: 10.1007/s000330050044.  Google Scholar

[9]

M. Canadell and À. Haro, Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), 1829-1868.  doi: 10.1007/s00332-017-9388-z.  Google Scholar

[10]

M. Canadell and À. Haro, Computation of quasiperiodic normally hyperbolic invariant tori: Rigorous results, J. Nonlinear Sci., 27 (2017), 1869-1904.  doi: 10.1007/s00332-017-9389-y.  Google Scholar

[11]

M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser., 4, Springer, Cham, 2014, 85–94. doi: 10.1007/978-3-319-06953-1_9.  Google Scholar

[12]

M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at $L_2$ and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., 11 (2012), 1723-1753.  doi: 10.1137/110847366.  Google Scholar

[13]

M. J. Capiński and H. Kubica, Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions, preprint, arXiv: 1804.05580. Google Scholar

[14]

M. J. Capiński and P. Zgliczyński, Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., 30 (2011), 641-670.  doi: 10.3934/dcds.2011.30.641.  Google Scholar

[15]

M. J. Capiński and P. Zgliczyński, Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286.  doi: 10.1016/j.jde.2015.07.020.  Google Scholar

[16]

A. Celletti and L. Chierchia, Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys., 28 (1987), 2078-2086.  doi: 10.1063/1.527418.  Google Scholar

[17]

A. Celletti and L. Chierchia, A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl., 28, Springer, New York, 1991, 43–51. doi: 10.1007/978-1-4613-9092-3_6.  Google Scholar

[18]

M. Cercek, T. Gyergyek and M. Stanojevic, On the nonlinear dynamics of an instability in front of a positively biased electrode in a magnetized plasma, Nuclear Energy in Central Europe, Portoroz, Slovenia, 1996,531–538. Google Scholar

[19]

L. DieciJ. Lorenz and R. D. Russell, Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput., 12 (1991), 607-647.  doi: 10.1137/0912033.  Google Scholar

[20]

J.-P. Eckmann and P. Wittwer, A complete proof of the Feigenbaum conjectures, J. Statist. Phys., 46 (1987), 455-475.  doi: 10.1007/BF01013368.  Google Scholar

[21]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[22]

J.-Ll. FiguerasÀ. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.  doi: 10.1007/s10208-016-9339-3.  Google Scholar

[23]

J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math., 58 (1978), 5–15. doi: 10.21236/ADA039211.  Google Scholar

[24]

E. Fleurantin and J. D. Mireles-James, Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020). doi: 10.1016/j.cnsns.2020.105226.  Google Scholar

[25]

J. Gómez-Serrano, Computer-assisted proofs in PDE: A survey, SeMA J., 76 (2019), 459-484.  doi: 10.1007/s40324-019-00186-x.  Google Scholar

[26]

J. GuckenheimerK. Hoffman and W. Weckesser, The forced van der Pol equation. I. The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst., 2 (2003), 1-35.  doi: 10.1137/S1111111102404738.  Google Scholar

[27]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579.  doi: 10.1016/j.jde.2005.10.005.  Google Scholar

[28]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.  doi: 10.3934/dcdsb.2006.6.1261.  Google Scholar

[29]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207.  doi: 10.1137/050637327.  Google Scholar

[30]

À. Haro and A. Luque, A-posteriori KAM theory with optimal estimates for partially integrable systems, J. Differential Equations, 266 (2019), 1605-1674.  doi: 10.1016/j.jde.2018.08.003.  Google Scholar

[31]

M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1970,133–163.  Google Scholar

[32]

M. W. HirschC. C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.  doi: 10.1090/S0002-9904-1970-12537-X.  Google Scholar

[33]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/BFb0092042.  Google Scholar

[34]

K. Kaneko, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking. In connection with the coupled-logistic map, Progr. Theoret. Phys., 69 (1983), 1427-1442.  doi: 10.1143/PTP.69.1427.  Google Scholar

[35]

S.-H. KimR. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity, 2 (1989), 391-404.  doi: 10.1088/0951-7715/2/3/001.  Google Scholar

[36]

B. KrauskopfH. M. OsingaE. J. DoedelM. E. HendersonJ. GuckenheimerA. VladimirskyM. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.  doi: 10.1142/S0218127405012533.  Google Scholar

[37]

O. E. Lanford, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[38]

W. F. Langford, Numerical studies of torus bifurcations, in Numerical Methods for Bifurcation Problems, Internat. Schriftenreihe Numer. Math., 70, Birkhäuser, Basel, 1984,285–295. doi: 10.1007/978-3-0348-6256-1_19.  Google Scholar

[39]

J.-P. LessardJ. D. Mireles James and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.  doi: 10.1007/s10884-014-9367-0.  Google Scholar

[40]

R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys., 87 (1997), 211-249.  doi: 10.1007/BF02181486.  Google Scholar

[41]

R. de la Llave and D. Rana, Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 85-90.  doi: 10.1090/S0273-0979-1990-15848-3.  Google Scholar

[42]

R. de la Llave and D. Rana, Accurate strategies for K.A.M. bounds and their implementation, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl, 28, Springer, New York, 1991,127–146. doi: 10.1007/978-1-4613-9092-3_12.  Google Scholar

[43]

J. LlibreR. Martínez and C. Simó, Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem, J. Differential Equations, 58 (1985), 104-156.  doi: 10.1016/0022-0396(85)90024-5.  Google Scholar

[44]

T. MatsumotoL. O. Chua and R. Tokunaga, Chaos via torus breakdown, IEEE Trans. Circuits and Systems, 34 (1987), 240-253.  doi: 10.1109/TCS.1987.1086135.  Google Scholar

[45]

J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst., 12 (2013), 957-1006.  doi: 10.1137/12088224X.  Google Scholar

[46]

J. I. Neĭmark, Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR, 129 (1959), 736-739.   Google Scholar

[47]

H. M. Osinga, Computing global invariant manifolds: Techniques and applications, Proceedings of the International Congress of Mathematicians, 4, Kyung Moon Sa, Seoul, 2014, 1101–1123.  Google Scholar

[48]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701–710,754–762. Google Scholar

[49]

B. van der Pol, Frequency demultiplication, Nature, 120 (1927), 363-364.  doi: 10.1038/120363a0.  Google Scholar

[50]

R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph.D. thesis, New York University, 1964.  Google Scholar

[51]

C. Simó, Connection of invariant manifolds in the $n$-body problem, $n>3$, In Proceedings of the Sixth Conference of Portuguese and Spanish Mathematicians, Rev. Univ. Santander, 1979, 1257–1261.  Google Scholar

[52]

O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1225-1242.  doi: 10.1142/S0218127497000996.  Google Scholar

[53]

W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202.  doi: 10.1016/S0764-4442(99)80439-X.  Google Scholar

[54]

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.  doi: 10.1007/s002080010018.  Google Scholar

[55]

D. Wilczak and P. Zgliczyński, $C^n$ Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.   Google Scholar

[56]

D. WilczakS. Serrano and R. Barrio, Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: A computer-assisted proof, SIAM J. Appl. Dyn. Syst., 15 (2016), 356-390.  doi: 10.1137/15M1039201.  Google Scholar

[57]

P. Zgliczyński, $C^1$ Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.  doi: 10.1007/s102080010025.  Google Scholar

[58]

P. Zgliczyński, Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819.  doi: 10.1016/j.jde.2008.12.019.  Google Scholar

Figure 1.  On the left we have a cone attached at the point $ \gamma _U^{-1}(q) $ in the case when $ k = 2 $ and $ n = 3 $. Note that the cone is not the blue (cone shaped) set. The cone $ \mathbf{Q}(\gamma_U^{-1}(q)) $ is the complement of the blue set in $ \mathbb{R}^3 $; i.e. the white region outside of the blue set. On the right we have an example of a Lipschitz manifold
Figure 2.  The set $ U $ is a collection of boxes, and we prove the existence of a star-shaped invariant closed curve around $ q^{\ast} $ which satisfies the cone conditions
Figure 3.  A well aligned cone
Figure 4.  Construction of $ \mathcal{G}(h) $
Figure 5.  Since $ \mathcal{G}^{n}(h) $ and $ \mathcal{G}^{n-1}(h) $ satisfy cone conditions, we can find an angle $ \alpha $, such that the isosceles triangle, with base joining $ q_{n} $ and $ q_{n-1} $, as in above plot, will fit between $ \mathcal{G}^{n}(h) $ and $ \mathcal{G}^{n-1}(h) $. By compactness of $ U $ and the fact that we have a finite number of $ C^{1} $ local maps $ \gamma_{i} $, the $ \alpha $ can be chosen independently of $ n, \theta, q_{n} $ and of $ q_{n-1} $. This means that the area between $ \mathcal{G}^{n}(h) $ and $ \mathcal{G}^{n-1}(h) $ is bounded from below by $ C\Vert q_{n}-q_{n-1}\Vert^{2} $, where $ C>0 $ is some constant independent from $ n $ and $ \theta $
Figure 6.  Generalization to a vector bundle setting. The vector bundle $ E $ is in grey, its base is the curve $ p^* $, which is in black, with the fibers $ E_{\theta} $ represented as the grey lines. The set $ U $ consists of the union of the small rectangles. Note that in this picture $ p^* $ is not the invariant curve, rather it is the base of the vector bundle
Figure 7.  Intersections of the invariant Lipschitz tori for the Van der Pol system with the $ t = 0 $ section for each parameter from (22). The smaller the $ \mu $ the more circular/smooth the curve
Figure 8.  At $ \alpha = 0.75 $ we have an attracting limit cycle of $ P^2 $ on $ \Sigma $ (figure on the left) which is the intersection of the two dimensional $ C^k $ torus of the ODE with $ \Sigma \cap \{y>0\} $. On the right we plot half of the torus. In black we have both components of the torus intersection with $ \Sigma $; one for $ y<0 $ and the other for $ y>0 $
Figure 10.  Colors have the same meaning as in Figure 9. At $ \alpha = 0.8225 $ we have transverse intersections of $ W^{u}(c_{h}) $ and $ W^{s}(c_{h}) $ which leads to chaotic dynamics
Figure 9.  The plot of the periodic orbits $ c_{h} $ and $ c_{s} $ on $ \Sigma \cap \{y>0\} $. (The orbits are of period $ 6 $, but we plot only half of the points with $ y>0 $.) The hyperbolic orbit $ c_{u} $ is in blue, and the attracting orbit $ c_{s} $ is in green. The manifold $ W^{s}(c_{h}) $ is in red and $ W^{u}(c_{h}) $ is blue. (Left) at $ \alpha = 0.815 $, we see that a branch of $ W^{u}(c_{h}) $ goes inside and wraps around the attracting invariant circle. (Right) at $ \alpha = 0.835 $, we observe that a branch of $ W^{u}(c_{h}) $ goes to the other side of $ W^{s}(c_{h}) $ and gets caught in the basin of attraction of $ c_{s} $
Figure 11.  A resonance torus for $ \alpha = 0.85 $. In red we plot the periodic orbit from which the tori have initially originated through the Hopf type bifurcation
[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (111)
  • HTML views (363)
  • Cited by (0)

[Back to Top]