
-
Previous Article
Time dependent center manifold in PDEs
- DCDS Home
- This Issue
-
Next Article
Generic Birkhoff spectra
Computer assisted proofs of two-dimensional attracting invariant tori for ODEs
1. | AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland |
2. | Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA |
This work studies existence and regularity questions for attracting invariant tori in three dimensional dissipative systems of ordinary differential equations. Our main result is a constructive method of computer assisted proof which applies to explicit problems in non-perturbative regimes. We obtain verifiable lower bounds on the regularity of the attractor in terms of the ratio of the expansion rate on the torus with the contraction rate near the torus. We consider separately two important cases of rotational and resonant tori. In the rotational case we obtain $ C^k $ lower bounds on the regularity of the embedding. In the resonant case we verify the existence of tori which are only $ C^0 $ and neither star-shaped nor Lipschitz.
References:
[1] |
G. Alefeld, Inclusion methods for systems of nonlinear equations–the interval Newton method and modifications, in Topics in Validated Computations, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 7–26. |
[2] |
G. Arioli and H. Koch,
Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.
doi: 10.1016/j.na.2014.09.023. |
[3] |
C. Baesens, J. Guckenheimer, S. Kim and R. S. MacKay,
Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.
doi: 10.1016/0167-2789(91)90155-3. |
[4] |
T. Bakri, Y. A. Kuznetsov and F. Verhulst,
Torus bifurcations in a mechanical system, J. Dynam. Differential Equations, 27 (2015), 371-403.
doi: 10.1007/s10884-013-9339-9. |
[5] |
T. Bakri and F. Verhulst,
Bifurcations of quasi-periodic dynamics: Torus breakdown, Z. Angew. Math. Phys., 65 (2014), 1053-1076.
doi: 10.1007/s00033-013-0363-8. |
[6] |
J. B. van den Berg and J.-P. Lessard,
Rigorous numerics in dynamics, Notices Amer. Math. Soc., 62 (2015), 1057-1061.
doi: 10.1090/noti1276. |
[7] |
H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., 19, Birkhäuser, Basel, 1996,423–447.
doi: 10.1007/978-3-0348-7518-9_20. |
[8] |
H. W. Broer, H. M. Osinga and G. Vegter,
Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys., 48 (1997), 480-524.
doi: 10.1007/s000330050044. |
[9] |
M. Canadell and À. Haro,
Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), 1829-1868.
doi: 10.1007/s00332-017-9388-z. |
[10] |
M. Canadell and À. Haro,
Computation of quasiperiodic normally hyperbolic invariant tori: Rigorous results, J. Nonlinear Sci., 27 (2017), 1869-1904.
doi: 10.1007/s00332-017-9389-y. |
[11] |
M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser., 4, Springer, Cham, 2014, 85–94.
doi: 10.1007/978-3-319-06953-1_9. |
[12] |
M. J. Capiński,
Computer assisted existence proofs of Lyapunov orbits at $L_2$ and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., 11 (2012), 1723-1753.
doi: 10.1137/110847366. |
[13] |
M. J. Capiński and H. Kubica, Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions, preprint, arXiv: 1804.05580. |
[14] |
M. J. Capiński and P. Zgliczyński,
Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., 30 (2011), 641-670.
doi: 10.3934/dcds.2011.30.641. |
[15] |
M. J. Capiński and P. Zgliczyński,
Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286.
doi: 10.1016/j.jde.2015.07.020. |
[16] |
A. Celletti and L. Chierchia,
Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys., 28 (1987), 2078-2086.
doi: 10.1063/1.527418. |
[17] |
A. Celletti and L. Chierchia, A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl., 28, Springer, New York, 1991, 43–51.
doi: 10.1007/978-1-4613-9092-3_6. |
[18] |
M. Cercek, T. Gyergyek and M. Stanojevic, On the nonlinear dynamics of an instability in front of a positively biased electrode in a magnetized plasma, Nuclear Energy in Central Europe, Portoroz, Slovenia, 1996,531–538. |
[19] |
L. Dieci, J. Lorenz and R. D. Russell,
Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput., 12 (1991), 607-647.
doi: 10.1137/0912033. |
[20] |
J.-P. Eckmann and P. Wittwer,
A complete proof of the Feigenbaum conjectures, J. Statist. Phys., 46 (1987), 455-475.
doi: 10.1007/BF01013368. |
[21] |
N. Fenichel,
Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.
doi: 10.1512/iumj.1972.21.21017. |
[22] |
J.-Ll. Figueras, À. Haro and A. Luque,
Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.
doi: 10.1007/s10208-016-9339-3. |
[23] |
J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math., 58 (1978), 5–15.
doi: 10.21236/ADA039211. |
[24] |
E. Fleurantin and J. D. Mireles-James, Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020).
doi: 10.1016/j.cnsns.2020.105226. |
[25] |
J. Gómez-Serrano,
Computer-assisted proofs in PDE: A survey, SeMA J., 76 (2019), 459-484.
doi: 10.1007/s40324-019-00186-x. |
[26] |
J. Guckenheimer, K. Hoffman and W. Weckesser,
The forced van der Pol equation. I. The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst., 2 (2003), 1-35.
doi: 10.1137/S1111111102404738. |
[27] |
À. Haro and R. de la Llave,
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579.
doi: 10.1016/j.jde.2005.10.005. |
[28] |
À. Haro and R. de la Llave,
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.
doi: 10.3934/dcdsb.2006.6.1261. |
[29] |
À. Haro and R. de la Llave,
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207.
doi: 10.1137/050637327. |
[30] |
À. Haro and A. Luque,
A-posteriori KAM theory with optimal estimates for partially integrable systems, J. Differential Equations, 266 (2019), 1605-1674.
doi: 10.1016/j.jde.2018.08.003. |
[31] |
M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1970,133–163. |
[32] |
M. W. Hirsch, C. C. Pugh and M. Shub,
Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.
doi: 10.1090/S0002-9904-1970-12537-X. |
[33] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/BFb0092042. |
[34] |
K. Kaneko,
Transition from torus to chaos accompanied by frequency lockings with symmetry breaking. In connection with the coupled-logistic map, Progr. Theoret. Phys., 69 (1983), 1427-1442.
doi: 10.1143/PTP.69.1427. |
[35] |
S.-H. Kim, R. S. MacKay and J. Guckenheimer,
Resonance regions for families of torus maps, Nonlinearity, 2 (1989), 391-404.
doi: 10.1088/0951-7715/2/3/001. |
[36] |
B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge,
A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.
doi: 10.1142/S0218127405012533. |
[37] |
O. E. Lanford,
A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.
doi: 10.1090/S0273-0979-1982-15008-X. |
[38] |
W. F. Langford, Numerical studies of torus bifurcations, in Numerical Methods for Bifurcation Problems, Internat. Schriftenreihe Numer. Math., 70, Birkhäuser, Basel, 1984,285–295.
doi: 10.1007/978-3-0348-6256-1_19. |
[39] |
J.-P. Lessard, J. D. Mireles James and C. Reinhardt,
Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.
doi: 10.1007/s10884-014-9367-0. |
[40] |
R. de la Llave,
Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys., 87 (1997), 211-249.
doi: 10.1007/BF02181486. |
[41] |
R. de la Llave and D. Rana,
Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 85-90.
doi: 10.1090/S0273-0979-1990-15848-3. |
[42] |
R. de la Llave and D. Rana, Accurate strategies for K.A.M. bounds and their implementation, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl, 28, Springer, New York, 1991,127–146.
doi: 10.1007/978-1-4613-9092-3_12. |
[43] |
J. Llibre, R. Martínez and C. Simó,
Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem, J. Differential Equations, 58 (1985), 104-156.
doi: 10.1016/0022-0396(85)90024-5. |
[44] |
T. Matsumoto, L. O. Chua and R. Tokunaga,
Chaos via torus breakdown, IEEE Trans. Circuits and Systems, 34 (1987), 240-253.
doi: 10.1109/TCS.1987.1086135. |
[45] |
J. D. Mireles James and K. Mischaikow,
Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst., 12 (2013), 957-1006.
doi: 10.1137/12088224X. |
[46] |
J. I. Neĭmark,
Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR, 129 (1959), 736-739.
|
[47] |
H. M. Osinga, Computing global invariant manifolds: Techniques and applications, Proceedings of the International Congress of Mathematicians, 4, Kyung Moon Sa, Seoul, 2014, 1101–1123. |
[48] |
B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701–710,754–762. |
[49] |
B. van der Pol,
Frequency demultiplication, Nature, 120 (1927), 363-364.
doi: 10.1038/120363a0. |
[50] |
R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph.D. thesis, New York University, 1964. |
[51] |
C. Simó, Connection of invariant manifolds in the $n$-body problem, $n>3$, In Proceedings of the Sixth Conference of Portuguese and Spanish Mathematicians, Rev. Univ. Santander, 1979, 1257–1261. |
[52] |
O. Sosnovtseva and E. Mosekilde,
Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1225-1242.
doi: 10.1142/S0218127497000996. |
[53] |
W. Tucker,
The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202.
doi: 10.1016/S0764-4442(99)80439-X. |
[54] |
W. Tucker,
A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.
doi: 10.1007/s002080010018. |
[55] |
D. Wilczak and P. Zgliczyński,
$C^n$ Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.
|
[56] |
D. Wilczak, S. Serrano and R. Barrio,
Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: A computer-assisted proof, SIAM J. Appl. Dyn. Syst., 15 (2016), 356-390.
doi: 10.1137/15M1039201. |
[57] |
P. Zgliczyński,
$C^1$ Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.
doi: 10.1007/s102080010025. |
[58] |
P. Zgliczyński,
Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819.
doi: 10.1016/j.jde.2008.12.019. |
show all references
References:
[1] |
G. Alefeld, Inclusion methods for systems of nonlinear equations–the interval Newton method and modifications, in Topics in Validated Computations, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 7–26. |
[2] |
G. Arioli and H. Koch,
Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.
doi: 10.1016/j.na.2014.09.023. |
[3] |
C. Baesens, J. Guckenheimer, S. Kim and R. S. MacKay,
Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.
doi: 10.1016/0167-2789(91)90155-3. |
[4] |
T. Bakri, Y. A. Kuznetsov and F. Verhulst,
Torus bifurcations in a mechanical system, J. Dynam. Differential Equations, 27 (2015), 371-403.
doi: 10.1007/s10884-013-9339-9. |
[5] |
T. Bakri and F. Verhulst,
Bifurcations of quasi-periodic dynamics: Torus breakdown, Z. Angew. Math. Phys., 65 (2014), 1053-1076.
doi: 10.1007/s00033-013-0363-8. |
[6] |
J. B. van den Berg and J.-P. Lessard,
Rigorous numerics in dynamics, Notices Amer. Math. Soc., 62 (2015), 1057-1061.
doi: 10.1090/noti1276. |
[7] |
H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., 19, Birkhäuser, Basel, 1996,423–447.
doi: 10.1007/978-3-0348-7518-9_20. |
[8] |
H. W. Broer, H. M. Osinga and G. Vegter,
Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys., 48 (1997), 480-524.
doi: 10.1007/s000330050044. |
[9] |
M. Canadell and À. Haro,
Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), 1829-1868.
doi: 10.1007/s00332-017-9388-z. |
[10] |
M. Canadell and À. Haro,
Computation of quasiperiodic normally hyperbolic invariant tori: Rigorous results, J. Nonlinear Sci., 27 (2017), 1869-1904.
doi: 10.1007/s00332-017-9389-y. |
[11] |
M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser., 4, Springer, Cham, 2014, 85–94.
doi: 10.1007/978-3-319-06953-1_9. |
[12] |
M. J. Capiński,
Computer assisted existence proofs of Lyapunov orbits at $L_2$ and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., 11 (2012), 1723-1753.
doi: 10.1137/110847366. |
[13] |
M. J. Capiński and H. Kubica, Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions, preprint, arXiv: 1804.05580. |
[14] |
M. J. Capiński and P. Zgliczyński,
Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., 30 (2011), 641-670.
doi: 10.3934/dcds.2011.30.641. |
[15] |
M. J. Capiński and P. Zgliczyński,
Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286.
doi: 10.1016/j.jde.2015.07.020. |
[16] |
A. Celletti and L. Chierchia,
Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys., 28 (1987), 2078-2086.
doi: 10.1063/1.527418. |
[17] |
A. Celletti and L. Chierchia, A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl., 28, Springer, New York, 1991, 43–51.
doi: 10.1007/978-1-4613-9092-3_6. |
[18] |
M. Cercek, T. Gyergyek and M. Stanojevic, On the nonlinear dynamics of an instability in front of a positively biased electrode in a magnetized plasma, Nuclear Energy in Central Europe, Portoroz, Slovenia, 1996,531–538. |
[19] |
L. Dieci, J. Lorenz and R. D. Russell,
Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput., 12 (1991), 607-647.
doi: 10.1137/0912033. |
[20] |
J.-P. Eckmann and P. Wittwer,
A complete proof of the Feigenbaum conjectures, J. Statist. Phys., 46 (1987), 455-475.
doi: 10.1007/BF01013368. |
[21] |
N. Fenichel,
Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.
doi: 10.1512/iumj.1972.21.21017. |
[22] |
J.-Ll. Figueras, À. Haro and A. Luque,
Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.
doi: 10.1007/s10208-016-9339-3. |
[23] |
J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math., 58 (1978), 5–15.
doi: 10.21236/ADA039211. |
[24] |
E. Fleurantin and J. D. Mireles-James, Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020).
doi: 10.1016/j.cnsns.2020.105226. |
[25] |
J. Gómez-Serrano,
Computer-assisted proofs in PDE: A survey, SeMA J., 76 (2019), 459-484.
doi: 10.1007/s40324-019-00186-x. |
[26] |
J. Guckenheimer, K. Hoffman and W. Weckesser,
The forced van der Pol equation. I. The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst., 2 (2003), 1-35.
doi: 10.1137/S1111111102404738. |
[27] |
À. Haro and R. de la Llave,
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579.
doi: 10.1016/j.jde.2005.10.005. |
[28] |
À. Haro and R. de la Llave,
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.
doi: 10.3934/dcdsb.2006.6.1261. |
[29] |
À. Haro and R. de la Llave,
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207.
doi: 10.1137/050637327. |
[30] |
À. Haro and A. Luque,
A-posteriori KAM theory with optimal estimates for partially integrable systems, J. Differential Equations, 266 (2019), 1605-1674.
doi: 10.1016/j.jde.2018.08.003. |
[31] |
M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1970,133–163. |
[32] |
M. W. Hirsch, C. C. Pugh and M. Shub,
Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.
doi: 10.1090/S0002-9904-1970-12537-X. |
[33] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/BFb0092042. |
[34] |
K. Kaneko,
Transition from torus to chaos accompanied by frequency lockings with symmetry breaking. In connection with the coupled-logistic map, Progr. Theoret. Phys., 69 (1983), 1427-1442.
doi: 10.1143/PTP.69.1427. |
[35] |
S.-H. Kim, R. S. MacKay and J. Guckenheimer,
Resonance regions for families of torus maps, Nonlinearity, 2 (1989), 391-404.
doi: 10.1088/0951-7715/2/3/001. |
[36] |
B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz and O. Junge,
A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.
doi: 10.1142/S0218127405012533. |
[37] |
O. E. Lanford,
A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.
doi: 10.1090/S0273-0979-1982-15008-X. |
[38] |
W. F. Langford, Numerical studies of torus bifurcations, in Numerical Methods for Bifurcation Problems, Internat. Schriftenreihe Numer. Math., 70, Birkhäuser, Basel, 1984,285–295.
doi: 10.1007/978-3-0348-6256-1_19. |
[39] |
J.-P. Lessard, J. D. Mireles James and C. Reinhardt,
Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.
doi: 10.1007/s10884-014-9367-0. |
[40] |
R. de la Llave,
Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys., 87 (1997), 211-249.
doi: 10.1007/BF02181486. |
[41] |
R. de la Llave and D. Rana,
Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 85-90.
doi: 10.1090/S0273-0979-1990-15848-3. |
[42] |
R. de la Llave and D. Rana, Accurate strategies for K.A.M. bounds and their implementation, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl, 28, Springer, New York, 1991,127–146.
doi: 10.1007/978-1-4613-9092-3_12. |
[43] |
J. Llibre, R. Martínez and C. Simó,
Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem, J. Differential Equations, 58 (1985), 104-156.
doi: 10.1016/0022-0396(85)90024-5. |
[44] |
T. Matsumoto, L. O. Chua and R. Tokunaga,
Chaos via torus breakdown, IEEE Trans. Circuits and Systems, 34 (1987), 240-253.
doi: 10.1109/TCS.1987.1086135. |
[45] |
J. D. Mireles James and K. Mischaikow,
Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst., 12 (2013), 957-1006.
doi: 10.1137/12088224X. |
[46] |
J. I. Neĭmark,
Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR, 129 (1959), 736-739.
|
[47] |
H. M. Osinga, Computing global invariant manifolds: Techniques and applications, Proceedings of the International Congress of Mathematicians, 4, Kyung Moon Sa, Seoul, 2014, 1101–1123. |
[48] |
B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701–710,754–762. |
[49] |
B. van der Pol,
Frequency demultiplication, Nature, 120 (1927), 363-364.
doi: 10.1038/120363a0. |
[50] |
R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph.D. thesis, New York University, 1964. |
[51] |
C. Simó, Connection of invariant manifolds in the $n$-body problem, $n>3$, In Proceedings of the Sixth Conference of Portuguese and Spanish Mathematicians, Rev. Univ. Santander, 1979, 1257–1261. |
[52] |
O. Sosnovtseva and E. Mosekilde,
Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1225-1242.
doi: 10.1142/S0218127497000996. |
[53] |
W. Tucker,
The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202.
doi: 10.1016/S0764-4442(99)80439-X. |
[54] |
W. Tucker,
A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.
doi: 10.1007/s002080010018. |
[55] |
D. Wilczak and P. Zgliczyński,
$C^n$ Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.
|
[56] |
D. Wilczak, S. Serrano and R. Barrio,
Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: A computer-assisted proof, SIAM J. Appl. Dyn. Syst., 15 (2016), 356-390.
doi: 10.1137/15M1039201. |
[57] |
P. Zgliczyński,
$C^1$ Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.
doi: 10.1007/s102080010025. |
[58] |
P. Zgliczyński,
Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819.
doi: 10.1016/j.jde.2008.12.019. |











[1] |
A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721 |
[2] |
Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95 |
[3] |
Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 15-25. doi: 10.3934/dcdss.2008.1.15 |
[4] |
Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017 |
[5] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[6] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[7] |
Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164 |
[8] |
Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045 |
[9] |
István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003 |
[10] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[11] |
Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165 |
[12] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
[13] |
Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040 |
[14] |
Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 |
[15] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[16] |
Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control and Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517 |
[17] |
Alex Bihlo, James Jackaman, Francis Valiquette. On the development of symmetry-preserving finite element schemes for ordinary differential equations. Journal of Computational Dynamics, 2020, 7 (2) : 339-368. doi: 10.3934/jcd.2020014 |
[18] |
Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283 |
[19] |
Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281 |
[20] |
Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]