doi: 10.3934/dcds.2020162

Computer assisted proofs of two-dimensional attracting invariant tori for ODEs

1. 

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

2. 

Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA

* Corresponding author: maciej.capinski@agh.edu.pl

Received  May 2019 Revised  December 2019 Published  March 2020

Fund Project: The first author is supported by by the NCN grant 2018/29/B/ST1/00109. The work has been conducted during his visit to FAU sponsored by the Fulbright Foundation. The third author was partially supported by National Science Foundation grant DMS 1813501

This work studies existence and regularity questions for attracting invariant tori in three dimensional dissipative systems of ordinary differential equations. Our main result is a constructive method of computer assisted proof which applies to explicit problems in non-perturbative regimes. We obtain verifiable lower bounds on the regularity of the attractor in terms of the ratio of the expansion rate on the torus with the contraction rate near the torus. We consider separately two important cases of rotational and resonant tori. In the rotational case we obtain $ C^k $ lower bounds on the regularity of the embedding. In the resonant case we verify the existence of tori which are only $ C^0 $ and neither star-shaped nor Lipschitz.

Citation: Maciej J. Capiński, Emmanuel Fleurantin, J. D. Mireles James. Computer assisted proofs of two-dimensional attracting invariant tori for ODEs. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020162
References:
[1]

G. Alefeld, Inclusion methods for systems of nonlinear equations–the interval Newton method and modifications, in Topics in Validated Computations, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 7–26.  Google Scholar

[2]

G. Arioli and H. Koch, Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.  doi: 10.1016/j.na.2014.09.023.  Google Scholar

[3]

C. BaesensJ. GuckenheimerS. Kim and R. S. MacKay, Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.  doi: 10.1016/0167-2789(91)90155-3.  Google Scholar

[4]

T. BakriY. A. Kuznetsov and F. Verhulst, Torus bifurcations in a mechanical system, J. Dynam. Differential Equations, 27 (2015), 371-403.  doi: 10.1007/s10884-013-9339-9.  Google Scholar

[5]

T. Bakri and F. Verhulst, Bifurcations of quasi-periodic dynamics: Torus breakdown, Z. Angew. Math. Phys., 65 (2014), 1053-1076.  doi: 10.1007/s00033-013-0363-8.  Google Scholar

[6]

J. B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics, Notices Amer. Math. Soc., 62 (2015), 1057-1061.  doi: 10.1090/noti1276.  Google Scholar

[7]

H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., 19, Birkhäuser, Basel, 1996,423–447. doi: 10.1007/978-3-0348-7518-9_20.  Google Scholar

[8]

H. W. BroerH. M. Osinga and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys., 48 (1997), 480-524.  doi: 10.1007/s000330050044.  Google Scholar

[9]

M. Canadell and À. Haro, Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), 1829-1868.  doi: 10.1007/s00332-017-9388-z.  Google Scholar

[10]

M. Canadell and À. Haro, Computation of quasiperiodic normally hyperbolic invariant tori: Rigorous results, J. Nonlinear Sci., 27 (2017), 1869-1904.  doi: 10.1007/s00332-017-9389-y.  Google Scholar

[11]

M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser., 4, Springer, Cham, 2014, 85–94. doi: 10.1007/978-3-319-06953-1_9.  Google Scholar

[12]

M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at $L_2$ and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., 11 (2012), 1723-1753.  doi: 10.1137/110847366.  Google Scholar

[13]

M. J. Capiński and H. Kubica, Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions, preprint, arXiv: 1804.05580. Google Scholar

[14]

M. J. Capiński and P. Zgliczyński, Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., 30 (2011), 641-670.  doi: 10.3934/dcds.2011.30.641.  Google Scholar

[15]

M. J. Capiński and P. Zgliczyński, Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286.  doi: 10.1016/j.jde.2015.07.020.  Google Scholar

[16]

A. Celletti and L. Chierchia, Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys., 28 (1987), 2078-2086.  doi: 10.1063/1.527418.  Google Scholar

[17]

A. Celletti and L. Chierchia, A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl., 28, Springer, New York, 1991, 43–51. doi: 10.1007/978-1-4613-9092-3_6.  Google Scholar

[18]

M. Cercek, T. Gyergyek and M. Stanojevic, On the nonlinear dynamics of an instability in front of a positively biased electrode in a magnetized plasma, Nuclear Energy in Central Europe, Portoroz, Slovenia, 1996,531–538. Google Scholar

[19]

L. DieciJ. Lorenz and R. D. Russell, Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput., 12 (1991), 607-647.  doi: 10.1137/0912033.  Google Scholar

[20]

J.-P. Eckmann and P. Wittwer, A complete proof of the Feigenbaum conjectures, J. Statist. Phys., 46 (1987), 455-475.  doi: 10.1007/BF01013368.  Google Scholar

[21]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[22]

J.-Ll. FiguerasÀ. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.  doi: 10.1007/s10208-016-9339-3.  Google Scholar

[23]

J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math., 58 (1978), 5–15. doi: 10.21236/ADA039211.  Google Scholar

[24]

E. Fleurantin and J. D. Mireles-James, Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020). doi: 10.1016/j.cnsns.2020.105226.  Google Scholar

[25]

J. Gómez-Serrano, Computer-assisted proofs in PDE: A survey, SeMA J., 76 (2019), 459-484.  doi: 10.1007/s40324-019-00186-x.  Google Scholar

[26]

J. GuckenheimerK. Hoffman and W. Weckesser, The forced van der Pol equation. I. The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst., 2 (2003), 1-35.  doi: 10.1137/S1111111102404738.  Google Scholar

[27]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579.  doi: 10.1016/j.jde.2005.10.005.  Google Scholar

[28]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.  doi: 10.3934/dcdsb.2006.6.1261.  Google Scholar

[29]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207.  doi: 10.1137/050637327.  Google Scholar

[30]

À. Haro and A. Luque, A-posteriori KAM theory with optimal estimates for partially integrable systems, J. Differential Equations, 266 (2019), 1605-1674.  doi: 10.1016/j.jde.2018.08.003.  Google Scholar

[31]

M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1970,133–163.  Google Scholar

[32]

M. W. HirschC. C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.  doi: 10.1090/S0002-9904-1970-12537-X.  Google Scholar

[33]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/BFb0092042.  Google Scholar

[34]

K. Kaneko, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking. In connection with the coupled-logistic map, Progr. Theoret. Phys., 69 (1983), 1427-1442.  doi: 10.1143/PTP.69.1427.  Google Scholar

[35]

S.-H. KimR. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity, 2 (1989), 391-404.  doi: 10.1088/0951-7715/2/3/001.  Google Scholar

[36]

B. KrauskopfH. M. OsingaE. J. DoedelM. E. HendersonJ. GuckenheimerA. VladimirskyM. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.  doi: 10.1142/S0218127405012533.  Google Scholar

[37]

O. E. Lanford, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[38]

W. F. Langford, Numerical studies of torus bifurcations, in Numerical Methods for Bifurcation Problems, Internat. Schriftenreihe Numer. Math., 70, Birkhäuser, Basel, 1984,285–295. doi: 10.1007/978-3-0348-6256-1_19.  Google Scholar

[39]

J.-P. LessardJ. D. Mireles James and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.  doi: 10.1007/s10884-014-9367-0.  Google Scholar

[40]

R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys., 87 (1997), 211-249.  doi: 10.1007/BF02181486.  Google Scholar

[41]

R. de la Llave and D. Rana, Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 85-90.  doi: 10.1090/S0273-0979-1990-15848-3.  Google Scholar

[42]

R. de la Llave and D. Rana, Accurate strategies for K.A.M. bounds and their implementation, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl, 28, Springer, New York, 1991,127–146. doi: 10.1007/978-1-4613-9092-3_12.  Google Scholar

[43]

J. LlibreR. Martínez and C. Simó, Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem, J. Differential Equations, 58 (1985), 104-156.  doi: 10.1016/0022-0396(85)90024-5.  Google Scholar

[44]

T. MatsumotoL. O. Chua and R. Tokunaga, Chaos via torus breakdown, IEEE Trans. Circuits and Systems, 34 (1987), 240-253.  doi: 10.1109/TCS.1987.1086135.  Google Scholar

[45]

J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst., 12 (2013), 957-1006.  doi: 10.1137/12088224X.  Google Scholar

[46]

J. I. Neĭmark, Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR, 129 (1959), 736-739.   Google Scholar

[47]

H. M. Osinga, Computing global invariant manifolds: Techniques and applications, Proceedings of the International Congress of Mathematicians, 4, Kyung Moon Sa, Seoul, 2014, 1101–1123.  Google Scholar

[48]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701–710,754–762. Google Scholar

[49]

B. van der Pol, Frequency demultiplication, Nature, 120 (1927), 363-364.  doi: 10.1038/120363a0.  Google Scholar

[50]

R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph.D. thesis, New York University, 1964.  Google Scholar

[51]

C. Simó, Connection of invariant manifolds in the $n$-body problem, $n>3$, In Proceedings of the Sixth Conference of Portuguese and Spanish Mathematicians, Rev. Univ. Santander, 1979, 1257–1261.  Google Scholar

[52]

O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1225-1242.  doi: 10.1142/S0218127497000996.  Google Scholar

[53]

W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202.  doi: 10.1016/S0764-4442(99)80439-X.  Google Scholar

[54]

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.  doi: 10.1007/s002080010018.  Google Scholar

[55]

D. Wilczak and P. Zgliczyński, $C^n$ Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.   Google Scholar

[56]

D. WilczakS. Serrano and R. Barrio, Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: A computer-assisted proof, SIAM J. Appl. Dyn. Syst., 15 (2016), 356-390.  doi: 10.1137/15M1039201.  Google Scholar

[57]

P. Zgliczyński, $C^1$ Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.  doi: 10.1007/s102080010025.  Google Scholar

[58]

P. Zgliczyński, Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819.  doi: 10.1016/j.jde.2008.12.019.  Google Scholar

show all references

References:
[1]

G. Alefeld, Inclusion methods for systems of nonlinear equations–the interval Newton method and modifications, in Topics in Validated Computations, Stud. Comput. Math., 5, North-Holland, Amsterdam, 1994, 7–26.  Google Scholar

[2]

G. Arioli and H. Koch, Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation, Nonlinear Anal., 113 (2015), 51-70.  doi: 10.1016/j.na.2014.09.023.  Google Scholar

[3]

C. BaesensJ. GuckenheimerS. Kim and R. S. MacKay, Three coupled oscillators: Mode-locking, global bifurcations and toroidal chaos, Phys. D, 49 (1991), 387-475.  doi: 10.1016/0167-2789(91)90155-3.  Google Scholar

[4]

T. BakriY. A. Kuznetsov and F. Verhulst, Torus bifurcations in a mechanical system, J. Dynam. Differential Equations, 27 (2015), 371-403.  doi: 10.1007/s10884-013-9339-9.  Google Scholar

[5]

T. Bakri and F. Verhulst, Bifurcations of quasi-periodic dynamics: Torus breakdown, Z. Angew. Math. Phys., 65 (2014), 1053-1076.  doi: 10.1007/s00033-013-0363-8.  Google Scholar

[6]

J. B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics, Notices Amer. Math. Soc., 62 (2015), 1057-1061.  doi: 10.1090/noti1276.  Google Scholar

[7]

H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic invariant manifolds, in Nonlinear Dynamical Systems and Chaos, Progr. Nonlinear Differential Equations Appl., 19, Birkhäuser, Basel, 1996,423–447. doi: 10.1007/978-3-0348-7518-9_20.  Google Scholar

[8]

H. W. BroerH. M. Osinga and G. Vegter, Algorithms for computing normally hyperbolic invariant manifolds, Z. Angew. Math. Phys., 48 (1997), 480-524.  doi: 10.1007/s000330050044.  Google Scholar

[9]

M. Canadell and À. Haro, Computation of quasi-periodic normally hyperbolic invariant tori: Algorithms, numerical explorations and mechanisms of breakdown, J. Nonlinear Sci., 27 (2017), 1829-1868.  doi: 10.1007/s00332-017-9388-z.  Google Scholar

[10]

M. Canadell and À. Haro, Computation of quasiperiodic normally hyperbolic invariant tori: Rigorous results, J. Nonlinear Sci., 27 (2017), 1869-1904.  doi: 10.1007/s00332-017-9389-y.  Google Scholar

[11]

M. Canadell and À. Haro, Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, in Advances in Differential Equations and Applications, SEMA SIMAI Springer Ser., 4, Springer, Cham, 2014, 85–94. doi: 10.1007/978-3-319-06953-1_9.  Google Scholar

[12]

M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at $L_2$ and transversal intersections of invariant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Appl. Dyn. Syst., 11 (2012), 1723-1753.  doi: 10.1137/110847366.  Google Scholar

[13]

M. J. Capiński and H. Kubica, Persistence of normally hyperbolic invariant manifolds in the absence of rate conditions, preprint, arXiv: 1804.05580. Google Scholar

[14]

M. J. Capiński and P. Zgliczyński, Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds, Discrete Contin. Dyn. Syst., 30 (2011), 641-670.  doi: 10.3934/dcds.2011.30.641.  Google Scholar

[15]

M. J. Capiński and P. Zgliczyński, Geometric proof for normally hyperbolic invariant manifolds, J. Differential Equations, 259 (2015), 6215-6286.  doi: 10.1016/j.jde.2015.07.020.  Google Scholar

[16]

A. Celletti and L. Chierchia, Rigorous estimates for a computer-assisted KAM theory, J. Math. Phys., 28 (1987), 2078-2086.  doi: 10.1063/1.527418.  Google Scholar

[17]

A. Celletti and L. Chierchia, A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl., 28, Springer, New York, 1991, 43–51. doi: 10.1007/978-1-4613-9092-3_6.  Google Scholar

[18]

M. Cercek, T. Gyergyek and M. Stanojevic, On the nonlinear dynamics of an instability in front of a positively biased electrode in a magnetized plasma, Nuclear Energy in Central Europe, Portoroz, Slovenia, 1996,531–538. Google Scholar

[19]

L. DieciJ. Lorenz and R. D. Russell, Numerical calculation of invariant tori, SIAM J. Sci. Statist. Comput., 12 (1991), 607-647.  doi: 10.1137/0912033.  Google Scholar

[20]

J.-P. Eckmann and P. Wittwer, A complete proof of the Feigenbaum conjectures, J. Statist. Phys., 46 (1987), 455-475.  doi: 10.1007/BF01013368.  Google Scholar

[21]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/72), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[22]

J.-Ll. FiguerasÀ. Haro and A. Luque, Rigorous computer-assisted application of KAM theory: A modern approach, Found. Comput. Math., 17 (2017), 1123-1193.  doi: 10.1007/s10208-016-9339-3.  Google Scholar

[23]

J. E. Flaherty and F. C. Hoppensteadt, Frequency entrainment of a forced van der Pol oscillator, Studies in Appl. Math., 58 (1978), 5–15. doi: 10.21236/ADA039211.  Google Scholar

[24]

E. Fleurantin and J. D. Mireles-James, Resonant tori, transport barriers, and chaos in a vector field with a Neimark-Sacker bifurcation, Commun. Nonlinear Sci. Numer. Simul., 85 (2020). doi: 10.1016/j.cnsns.2020.105226.  Google Scholar

[25]

J. Gómez-Serrano, Computer-assisted proofs in PDE: A survey, SeMA J., 76 (2019), 459-484.  doi: 10.1007/s40324-019-00186-x.  Google Scholar

[26]

J. GuckenheimerK. Hoffman and W. Weckesser, The forced van der Pol equation. I. The slow flow and its bifurcations, SIAM J. Appl. Dyn. Syst., 2 (2003), 1-35.  doi: 10.1137/S1111111102404738.  Google Scholar

[27]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results, J. Differential Equations, 228 (2006), 530-579.  doi: 10.1016/j.jde.2005.10.005.  Google Scholar

[28]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1261-1300.  doi: 10.3934/dcdsb.2006.6.1261.  Google Scholar

[29]

À. Haro and R. de la Llave, A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM J. Appl. Dyn. Syst., 6 (2007), 142-207.  doi: 10.1137/050637327.  Google Scholar

[30]

À. Haro and A. Luque, A-posteriori KAM theory with optimal estimates for partially integrable systems, J. Differential Equations, 266 (2019), 1605-1674.  doi: 10.1016/j.jde.2018.08.003.  Google Scholar

[31]

M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis (Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1970,133–163.  Google Scholar

[32]

M. W. HirschC. C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.  doi: 10.1090/S0002-9904-1970-12537-X.  Google Scholar

[33]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977. doi: 10.1007/BFb0092042.  Google Scholar

[34]

K. Kaneko, Transition from torus to chaos accompanied by frequency lockings with symmetry breaking. In connection with the coupled-logistic map, Progr. Theoret. Phys., 69 (1983), 1427-1442.  doi: 10.1143/PTP.69.1427.  Google Scholar

[35]

S.-H. KimR. S. MacKay and J. Guckenheimer, Resonance regions for families of torus maps, Nonlinearity, 2 (1989), 391-404.  doi: 10.1088/0951-7715/2/3/001.  Google Scholar

[36]

B. KrauskopfH. M. OsingaE. J. DoedelM. E. HendersonJ. GuckenheimerA. VladimirskyM. Dellnitz and O. Junge, A survey of methods for computing (un)stable manifolds of vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 763-791.  doi: 10.1142/S0218127405012533.  Google Scholar

[37]

O. E. Lanford, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[38]

W. F. Langford, Numerical studies of torus bifurcations, in Numerical Methods for Bifurcation Problems, Internat. Schriftenreihe Numer. Math., 70, Birkhäuser, Basel, 1984,285–295. doi: 10.1007/978-3-0348-6256-1_19.  Google Scholar

[39]

J.-P. LessardJ. D. Mireles James and C. Reinhardt, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26 (2014), 267-313.  doi: 10.1007/s10884-014-9367-0.  Google Scholar

[40]

R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys., 87 (1997), 211-249.  doi: 10.1007/BF02181486.  Google Scholar

[41]

R. de la Llave and D. Rana, Accurate strategies for small divisor problems, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 85-90.  doi: 10.1090/S0273-0979-1990-15848-3.  Google Scholar

[42]

R. de la Llave and D. Rana, Accurate strategies for K.A.M. bounds and their implementation, in Computer Aided Proofs in Analysis, IMA Vol. Math. Appl, 28, Springer, New York, 1991,127–146. doi: 10.1007/978-1-4613-9092-3_12.  Google Scholar

[43]

J. LlibreR. Martínez and C. Simó, Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near $L_2$ in the restricted three-body problem, J. Differential Equations, 58 (1985), 104-156.  doi: 10.1016/0022-0396(85)90024-5.  Google Scholar

[44]

T. MatsumotoL. O. Chua and R. Tokunaga, Chaos via torus breakdown, IEEE Trans. Circuits and Systems, 34 (1987), 240-253.  doi: 10.1109/TCS.1987.1086135.  Google Scholar

[45]

J. D. Mireles James and K. Mischaikow, Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps, SIAM J. Appl. Dyn. Syst., 12 (2013), 957-1006.  doi: 10.1137/12088224X.  Google Scholar

[46]

J. I. Neĭmark, Some cases of the dependence of periodic motions on parameters, Dokl. Akad. Nauk SSSR, 129 (1959), 736-739.   Google Scholar

[47]

H. M. Osinga, Computing global invariant manifolds: Techniques and applications, Proceedings of the International Congress of Mathematicians, 4, Kyung Moon Sa, Seoul, 2014, 1101–1123.  Google Scholar

[48]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations, Radio Review, 1 (1920), 701–710,754–762. Google Scholar

[49]

B. van der Pol, Frequency demultiplication, Nature, 120 (1927), 363-364.  doi: 10.1038/120363a0.  Google Scholar

[50]

R. J. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations, Ph.D. thesis, New York University, 1964.  Google Scholar

[51]

C. Simó, Connection of invariant manifolds in the $n$-body problem, $n>3$, In Proceedings of the Sixth Conference of Portuguese and Spanish Mathematicians, Rev. Univ. Santander, 1979, 1257–1261.  Google Scholar

[52]

O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), 1225-1242.  doi: 10.1142/S0218127497000996.  Google Scholar

[53]

W. Tucker, The Lorenz attractor exists, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1197-1202.  doi: 10.1016/S0764-4442(99)80439-X.  Google Scholar

[54]

W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.  doi: 10.1007/s002080010018.  Google Scholar

[55]

D. Wilczak and P. Zgliczyński, $C^n$ Lohner algorithm, Scheade Informaticae, 20 (2011), 9-46.   Google Scholar

[56]

D. WilczakS. Serrano and R. Barrio, Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rössler system: A computer-assisted proof, SIAM J. Appl. Dyn. Syst., 15 (2016), 356-390.  doi: 10.1137/15M1039201.  Google Scholar

[57]

P. Zgliczyński, $C^1$ Lohner algorithm, Found. Comput. Math., 2 (2002), 429-465.  doi: 10.1007/s102080010025.  Google Scholar

[58]

P. Zgliczyński, Covering relations, cone conditions and the stable manifold theorem, J. Differential Equations, 246 (2009), 1774-1819.  doi: 10.1016/j.jde.2008.12.019.  Google Scholar

Figure 1.  On the left we have a cone attached at the point $ \gamma _U^{-1}(q) $ in the case when $ k = 2 $ and $ n = 3 $. Note that the cone is not the blue (cone shaped) set. The cone $ \mathbf{Q}(\gamma_U^{-1}(q)) $ is the complement of the blue set in $ \mathbb{R}^3 $; i.e. the white region outside of the blue set. On the right we have an example of a Lipschitz manifold
Figure 2.  The set $ U $ is a collection of boxes, and we prove the existence of a star-shaped invariant closed curve around $ q^{\ast} $ which satisfies the cone conditions
Figure 3.  A well aligned cone
Figure 4.  Construction of $ \mathcal{G}(h) $
Figure 5.  Since $ \mathcal{G}^{n}(h) $ and $ \mathcal{G}^{n-1}(h) $ satisfy cone conditions, we can find an angle $ \alpha $, such that the isosceles triangle, with base joining $ q_{n} $ and $ q_{n-1} $, as in above plot, will fit between $ \mathcal{G}^{n}(h) $ and $ \mathcal{G}^{n-1}(h) $. By compactness of $ U $ and the fact that we have a finite number of $ C^{1} $ local maps $ \gamma_{i} $, the $ \alpha $ can be chosen independently of $ n, \theta, q_{n} $ and of $ q_{n-1} $. This means that the area between $ \mathcal{G}^{n}(h) $ and $ \mathcal{G}^{n-1}(h) $ is bounded from below by $ C\Vert q_{n}-q_{n-1}\Vert^{2} $, where $ C>0 $ is some constant independent from $ n $ and $ \theta $
Figure 6.  Generalization to a vector bundle setting. The vector bundle $ E $ is in grey, its base is the curve $ p^* $, which is in black, with the fibers $ E_{\theta} $ represented as the grey lines. The set $ U $ consists of the union of the small rectangles. Note that in this picture $ p^* $ is not the invariant curve, rather it is the base of the vector bundle
Figure 7.  Intersections of the invariant Lipschitz tori for the Van der Pol system with the $ t = 0 $ section for each parameter from (22). The smaller the $ \mu $ the more circular/smooth the curve
Figure 8.  At $ \alpha = 0.75 $ we have an attracting limit cycle of $ P^2 $ on $ \Sigma $ (figure on the left) which is the intersection of the two dimensional $ C^k $ torus of the ODE with $ \Sigma \cap \{y>0\} $. On the right we plot half of the torus. In black we have both components of the torus intersection with $ \Sigma $; one for $ y<0 $ and the other for $ y>0 $
Figure 10.  Colors have the same meaning as in Figure 9. At $ \alpha = 0.8225 $ we have transverse intersections of $ W^{u}(c_{h}) $ and $ W^{s}(c_{h}) $ which leads to chaotic dynamics
Figure 9.  The plot of the periodic orbits $ c_{h} $ and $ c_{s} $ on $ \Sigma \cap \{y>0\} $. (The orbits are of period $ 6 $, but we plot only half of the points with $ y>0 $.) The hyperbolic orbit $ c_{u} $ is in blue, and the attracting orbit $ c_{s} $ is in green. The manifold $ W^{s}(c_{h}) $ is in red and $ W^{u}(c_{h}) $ is blue. (Left) at $ \alpha = 0.815 $, we see that a branch of $ W^{u}(c_{h}) $ goes inside and wraps around the attracting invariant circle. (Right) at $ \alpha = 0.835 $, we observe that a branch of $ W^{u}(c_{h}) $ goes to the other side of $ W^{s}(c_{h}) $ and gets caught in the basin of attraction of $ c_{s} $
Figure 11.  A resonance torus for $ \alpha = 0.85 $. In red we plot the periodic orbit from which the tori have initially originated through the Hopf type bifurcation
[1]

A. Aschwanden, A. Schulze-Halberg, D. Stoffer. Stable periodic solutions for delay equations with positive feedback - a computer-assisted proof. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 721-736. doi: 10.3934/dcds.2006.14.721

[2]

Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95

[3]

Arno Berger. Counting uniformly attracting solutions of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 15-25. doi: 10.3934/dcdss.2008.1.15

[4]

Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017

[5]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[6]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[7]

Maxime Breden, Jean-Philippe Lessard. Polynomial interpolation and a priori bootstrap for computer-assisted proofs in nonlinear ODEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2825-2858. doi: 10.3934/dcdsb.2018164

[8]

István Balázs, Jan Bouwe van den Berg, Julien Courtois, János Dudás, Jean-Philippe Lessard, Anett Vörös-Kiss, JF Williams, Xi Yuan Yin. Computer-assisted proofs for radially symmetric solutions of PDEs. Journal of Computational Dynamics, 2018, 5 (1&2) : 61-80. doi: 10.3934/jcd.2018003

[9]

Thomas Wanner. Computer-assisted equilibrium validation for the diblock copolymer model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1075-1107. doi: 10.3934/dcds.2017045

[10]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[11]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[12]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[13]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[14]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[15]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[16]

Alex Bihlo, James Jackaman, Francis Valiquette. On the development of symmetry-preserving finite element schemes for ordinary differential equations. Journal of Computational Dynamics, 2020, 7 (2) : 339-368. doi: 10.3934/jcd.2020014

[17]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[18]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[19]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[20]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]