December  2020, 40(12): 6767-6781. doi: 10.3934/dcds.2020163

On the regularity of the Green current for semi-extremal endomorphisms of $ \mathbb{P}^2 $

Université de Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Received  June 2019 Revised  January 2020 Published  March 2020

We study the regularity of the Green current for semi-extremal endomorphisms of $ \mathbb{P}^2 $. Under suitable assumptions, we show that the pointwise lower Radon-Nikodym derivative of stable slices with respect to the one dimensional Lebesgue measure is bounded at almost every point for the equilibrium measure. This provides a weak amount of metric regularity for the Green current along holomorphic discs.

Citation: Christophe Dupont, Axel Rogue. On the regularity of the Green current for semi-extremal endomorphisms of $ \mathbb{P}^2 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6767-6781. doi: 10.3934/dcds.2020163
References:
[1] L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9781107326026.  Google Scholar
[2]

E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of Ck, Amer. J. Math., 122 (2000), 153-212.  doi: 10.1353/ajm.2000.0001.  Google Scholar

[3]

F. Berteloot and J.-J. Loeb, Spherical hypersurfaces and Lattès rational maps, J. Math. Pures Appl. (9), 77 (1998), 655-666. doi: 10.1016/S0021-7824(98)80003-2.  Google Scholar

[4]

F. Berteloot and J.-J. Loeb, Une caractérisation géométrique des exemples de Lattès de ${ \mathbb P}^k$, Bull. Soc. Math. France, 129 (2001), 175-188.  doi: 10.24033/bsmf.2392.  Google Scholar

[5]

F. BertelootC. Dupont and L. Molino, Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble), 58 (2008), 2137-2168.  doi: 10.5802/aif.2409.  Google Scholar

[6]

F. Berteloot and C. Dupont, Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., 80 (2005), 433-454.  doi: 10.4171/CMH/21.  Google Scholar

[7]

I. Binder and L. DeMarco, Dimension of pluriharmonic measure and polynomial endomorphisms of $ \mathbb C^n$, Int. Math. Res. Not., 2003 (2003), 613-625.  doi: 10.1155/S1073792803206048.  Google Scholar

[8]

J.-Y. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CPk, Acta Math., 182 (1999), 143-157.  doi: 10.1007/BF02392572.  Google Scholar

[9]

S. Cantat and S. Le Borgne, Théorème limite central pour les endomorphismes holomorphes et les correspondances modulaires, Int. Math. Res. Not., 2005 (2005), 3479-3510.  doi: 10.1155/IMRN.2005.3479.  Google Scholar

[10]

T.-C. Dinh and C. Dupont, Dimension de la mesure d'équilibre d'applications méromorphes, J. Geom. Anal., 14 (2004), 613-627.  doi: 10.1007/BF02922172.  Google Scholar

[11]

T.-C. DinhV.-A. Nguyên and N. Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differential Geom., 84 (2010), 465-488.  doi: 10.4310/jdg/1279114298.  Google Scholar

[12]

T.-C. Dinh and N. Sibony, Decay of correlations and the central limit theorem for meromorphic maps, Comm. Pure Appl. Math., 59 (2006), 754-768.  doi: 10.1002/cpa.20119.  Google Scholar

[13]

T.-C. Dinh and N. Sibony, Dynamics in several complex variables: Endomorphisms of projective spaces and polynomial-like mappings, Holomorphic Dynamical Systems, Lecture Notes in Math., 1998, Springer, Berlin, 2010,165–294. doi: 10.1007/978-3-642-13171-4_4.  Google Scholar

[14]

R. Dujardin, Fatou directions along the Julia set for endomorphisms of $ \mathbb{CP}^k$, J. Math. Pures Appl. (9), 98 (2012), 591-615. doi: 10.1016/j.matpur.2012.05.004.  Google Scholar

[15]

C. Dupont, Exemples de Lattès et domaines faiblement sphériques de $ \mathbb C^n$, Manuscripta Math., 111 (2003), 357-378.  doi: 10.1007/s00229-003-0378-0.  Google Scholar

[16]

C. Dupont, Bernoulli coding map and almost sure invariance principle for endomorphisms of $\mathbb{P}^k$, Probab. Theory Related Fields, 146 (2010), 337-359.  doi: 10.1007/s00440-008-0192-4.  Google Scholar

[17]

C. Dupont, On the dimension of invariant measures of endomorphisms of $\mathbb{CP}$k, Math. Ann., 349 (2011), 509-528.  doi: 10.1007/s00208-010-0519-1.  Google Scholar

[18]

C. Dupont and J. Taflin, Dynamics of fibered endomorphisms of ${ \mathbb P}^k$, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci., arXiv: 1811.06909. Google Scholar

[19]

J. E. Fornæss and N. Sibony, Hyperbolic maps on $ \mathbf P^2$, Math. Ann., 311 (1998), 305-333.  doi: 10.1007/s002080050189.  Google Scholar

[20]

M. Jonsson, Dynamics of polynomial skew products on $ \mathbf C^2$, Math. Ann., 314 (1999), 403-447.  doi: 10.1007/s002080050301.  Google Scholar

[21]

M. Jonsson and D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent. Math., 149 (2002), 409-430.  doi: 10.1007/s002220200220.  Google Scholar

[22] M. Klimek, Pluripotential Theory, London Mathematical Society Monographs, New Series, 6, The Clarendon Press, Oxford University Press, New York, 1991.   Google Scholar
[23]

F. Ledrappier, Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 37-40.   Google Scholar

[24]

V. Mayer, Comparing measures and invariant line fields, Ergodic Theory Dynam. Systems, 22 (2002), 555-570.  doi: 10.1017/S0143385702000275.  Google Scholar

[25]

Y. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004 doi: 10.4171/003.  Google Scholar

[26]

N. Sibony, Dynamique des applications rationnelles de $ \mathbf P^k$, in Dynamique et Géométrie Complexes (Lyon, 1997), Panor. Synthèses, 8, Soc. Math. France, Paris, 1999, 97–185.  Google Scholar

[27]

A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math., 99 (1990), 627-649.  doi: 10.1007/BF01234434.  Google Scholar

show all references

References:
[1] L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.  doi: 10.1017/CBO9781107326026.  Google Scholar
[2]

E. Bedford and M. Jonsson, Dynamics of regular polynomial endomorphisms of Ck, Amer. J. Math., 122 (2000), 153-212.  doi: 10.1353/ajm.2000.0001.  Google Scholar

[3]

F. Berteloot and J.-J. Loeb, Spherical hypersurfaces and Lattès rational maps, J. Math. Pures Appl. (9), 77 (1998), 655-666. doi: 10.1016/S0021-7824(98)80003-2.  Google Scholar

[4]

F. Berteloot and J.-J. Loeb, Une caractérisation géométrique des exemples de Lattès de ${ \mathbb P}^k$, Bull. Soc. Math. France, 129 (2001), 175-188.  doi: 10.24033/bsmf.2392.  Google Scholar

[5]

F. BertelootC. Dupont and L. Molino, Normalization of bundle holomorphic contractions and applications to dynamics, Ann. Inst. Fourier (Grenoble), 58 (2008), 2137-2168.  doi: 10.5802/aif.2409.  Google Scholar

[6]

F. Berteloot and C. Dupont, Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., 80 (2005), 433-454.  doi: 10.4171/CMH/21.  Google Scholar

[7]

I. Binder and L. DeMarco, Dimension of pluriharmonic measure and polynomial endomorphisms of $ \mathbb C^n$, Int. Math. Res. Not., 2003 (2003), 613-625.  doi: 10.1155/S1073792803206048.  Google Scholar

[8]

J.-Y. Briend and J. Duval, Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CPk, Acta Math., 182 (1999), 143-157.  doi: 10.1007/BF02392572.  Google Scholar

[9]

S. Cantat and S. Le Borgne, Théorème limite central pour les endomorphismes holomorphes et les correspondances modulaires, Int. Math. Res. Not., 2005 (2005), 3479-3510.  doi: 10.1155/IMRN.2005.3479.  Google Scholar

[10]

T.-C. Dinh and C. Dupont, Dimension de la mesure d'équilibre d'applications méromorphes, J. Geom. Anal., 14 (2004), 613-627.  doi: 10.1007/BF02922172.  Google Scholar

[11]

T.-C. DinhV.-A. Nguyên and N. Sibony, Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differential Geom., 84 (2010), 465-488.  doi: 10.4310/jdg/1279114298.  Google Scholar

[12]

T.-C. Dinh and N. Sibony, Decay of correlations and the central limit theorem for meromorphic maps, Comm. Pure Appl. Math., 59 (2006), 754-768.  doi: 10.1002/cpa.20119.  Google Scholar

[13]

T.-C. Dinh and N. Sibony, Dynamics in several complex variables: Endomorphisms of projective spaces and polynomial-like mappings, Holomorphic Dynamical Systems, Lecture Notes in Math., 1998, Springer, Berlin, 2010,165–294. doi: 10.1007/978-3-642-13171-4_4.  Google Scholar

[14]

R. Dujardin, Fatou directions along the Julia set for endomorphisms of $ \mathbb{CP}^k$, J. Math. Pures Appl. (9), 98 (2012), 591-615. doi: 10.1016/j.matpur.2012.05.004.  Google Scholar

[15]

C. Dupont, Exemples de Lattès et domaines faiblement sphériques de $ \mathbb C^n$, Manuscripta Math., 111 (2003), 357-378.  doi: 10.1007/s00229-003-0378-0.  Google Scholar

[16]

C. Dupont, Bernoulli coding map and almost sure invariance principle for endomorphisms of $\mathbb{P}^k$, Probab. Theory Related Fields, 146 (2010), 337-359.  doi: 10.1007/s00440-008-0192-4.  Google Scholar

[17]

C. Dupont, On the dimension of invariant measures of endomorphisms of $\mathbb{CP}$k, Math. Ann., 349 (2011), 509-528.  doi: 10.1007/s00208-010-0519-1.  Google Scholar

[18]

C. Dupont and J. Taflin, Dynamics of fibered endomorphisms of ${ \mathbb P}^k$, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci., arXiv: 1811.06909. Google Scholar

[19]

J. E. Fornæss and N. Sibony, Hyperbolic maps on $ \mathbf P^2$, Math. Ann., 311 (1998), 305-333.  doi: 10.1007/s002080050189.  Google Scholar

[20]

M. Jonsson, Dynamics of polynomial skew products on $ \mathbf C^2$, Math. Ann., 314 (1999), 403-447.  doi: 10.1007/s002080050301.  Google Scholar

[21]

M. Jonsson and D. Varolin, Stable manifolds of holomorphic diffeomorphisms, Invent. Math., 149 (2002), 409-430.  doi: 10.1007/s002220200220.  Google Scholar

[22] M. Klimek, Pluripotential Theory, London Mathematical Society Monographs, New Series, 6, The Clarendon Press, Oxford University Press, New York, 1991.   Google Scholar
[23]

F. Ledrappier, Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 37-40.   Google Scholar

[24]

V. Mayer, Comparing measures and invariant line fields, Ergodic Theory Dynam. Systems, 22 (2002), 555-570.  doi: 10.1017/S0143385702000275.  Google Scholar

[25]

Y. B. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004 doi: 10.4171/003.  Google Scholar

[26]

N. Sibony, Dynamique des applications rationnelles de $ \mathbf P^k$, in Dynamique et Géométrie Complexes (Lyon, 1997), Panor. Synthèses, 8, Soc. Math. France, Paris, 1999, 97–185.  Google Scholar

[27]

A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math., 99 (1990), 627-649.  doi: 10.1007/BF01234434.  Google Scholar

[1]

Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549

[2]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[3]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[4]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[5]

Zoltán Buczolich, Gabriella Keszthelyi. Isentropes and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 1989-2009. doi: 10.3934/dcds.2020102

[6]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

[7]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[8]

Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004

[9]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[10]

Kingshook Biswas. Complete conjugacy invariants of nonlinearizable holomorphic dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 847-856. doi: 10.3934/dcds.2010.26.847

[11]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[12]

Lucas Backes, Aaron Brown, Clark Butler. Continuity of Lyapunov exponents for cocycles with invariant holonomies. Journal of Modern Dynamics, 2018, 12: 223-260. doi: 10.3934/jmd.2018009

[13]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[14]

Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149

[15]

Alena Erchenko. Flexibility of Lyapunov exponents for expanding circle maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2325-2342. doi: 10.3934/dcds.2019098

[16]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[17]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[18]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[19]

Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251

[20]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (248)
  • Cited by (0)

Other articles
by authors

[Back to Top]