• Previous Article
    Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions
  • DCDS Home
  • This Issue
  • Next Article
    Time-fractional equations with reaction terms: Fundamental solutions and asymptotics
doi: 10.3934/dcds.2020165

Euler integral and perihelion librations

Dipartimento di Matematica "Tullio Levi–Civita", via Trieste, 63, 35121 Padova, Italy

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: The author is supported by the European Research Council. Grant 677793 Stable and Chaotic Motions in the Planetary Problem

We discuss dynamical aspects of an analysis of the two–centre problem started in [15]. The perturbative nature of our approach allows us to foresee applications to the three–body problem.

Citation: Gabriella Pinzari. Euler integral and perihelion librations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020165
References:
[1]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.   Google Scholar

[2]

A. A. Bekov and T. B. Omarov, Integrable cases of the Hamilton-Jacobi equation and some nonsteady problems of celestial mechanics, Soviet Astronomy, 22 (1978), 366-370.   Google Scholar

[3]

F. Biscani and D. Izzo, A complete and explicit solution to the three-dimensional problem of two fixed centres, Monthly Notices Roy. Astronomical Soc., 455 (2016), 3480-3493.  doi: 10.1093/mnras/stv2512.  Google Scholar

[4]

A. BoscagginA. Dambrosio and S. Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Rational Mech. Anal., 223 (2017), 1269-1306.  doi: 10.1007/s00205-016-1057-0.  Google Scholar

[5]

L. Chierchia and G. Pinzari, Deprit's reduction of the nodes revised, Celestial Mech. Dynam. Astronom., 109 (2011), 285-301.  doi: 10.1007/s10569-010-9329-8.  Google Scholar

[6]

L. Chierchia and G. Pinzari, The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math., 186 (2011), 1-77.  doi: 10.1007/s00222-011-0313-z.  Google Scholar

[7]

A. Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.  doi: 10.1007/BF01234305.  Google Scholar

[8]

H. R. Dullin and R. Montgomery, Syzygies in the two center problem, Nonlinearity, 29 (2016), 1212-1237.  doi: 10.1088/0951-7715/29/4/1212.  Google Scholar

[9]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582.  doi: 10.1017/S0143385704000410.  Google Scholar

[10]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.  doi: 10.1515/crll.1843.26.115.  Google Scholar

[11]

C. G. J. Jacobi, Jacobi's Lectures on Dynamics, Texts and Readings in Mathematics, 51, Hindustan Book Agency, New Delhi, 2009.  Google Scholar

[12]

J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62 (1995), 193-217.  doi: 10.1007/BF00692088.  Google Scholar

[13]

G. Pinzari, Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., 18 (2013), 860-906.  doi: 10.1134/S1560354713060178.  Google Scholar

[14]

G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Amer. Math. Soc., 255 (2018). doi: 10.1090/memo/1218.  Google Scholar

[15]

G. Pinzari, A first integral to the partially averaged Newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131 (2019), 30pp. doi: 10.1007/s10569-019-9899-z.  Google Scholar

[16]

H. WaalkensH. R. Dullin and P. H. Richter, The problem of two fixed centers: Bifurcations, actions, monodromy, Phys. D, 196 (2004), 265-310.  doi: 10.1016/j.physd.2004.05.006.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.   Google Scholar

[2]

A. A. Bekov and T. B. Omarov, Integrable cases of the Hamilton-Jacobi equation and some nonsteady problems of celestial mechanics, Soviet Astronomy, 22 (1978), 366-370.   Google Scholar

[3]

F. Biscani and D. Izzo, A complete and explicit solution to the three-dimensional problem of two fixed centres, Monthly Notices Roy. Astronomical Soc., 455 (2016), 3480-3493.  doi: 10.1093/mnras/stv2512.  Google Scholar

[4]

A. BoscagginA. Dambrosio and S. Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Rational Mech. Anal., 223 (2017), 1269-1306.  doi: 10.1007/s00205-016-1057-0.  Google Scholar

[5]

L. Chierchia and G. Pinzari, Deprit's reduction of the nodes revised, Celestial Mech. Dynam. Astronom., 109 (2011), 285-301.  doi: 10.1007/s10569-010-9329-8.  Google Scholar

[6]

L. Chierchia and G. Pinzari, The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math., 186 (2011), 1-77.  doi: 10.1007/s00222-011-0313-z.  Google Scholar

[7]

A. Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.  doi: 10.1007/BF01234305.  Google Scholar

[8]

H. R. Dullin and R. Montgomery, Syzygies in the two center problem, Nonlinearity, 29 (2016), 1212-1237.  doi: 10.1088/0951-7715/29/4/1212.  Google Scholar

[9]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582.  doi: 10.1017/S0143385704000410.  Google Scholar

[10]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.  doi: 10.1515/crll.1843.26.115.  Google Scholar

[11]

C. G. J. Jacobi, Jacobi's Lectures on Dynamics, Texts and Readings in Mathematics, 51, Hindustan Book Agency, New Delhi, 2009.  Google Scholar

[12]

J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62 (1995), 193-217.  doi: 10.1007/BF00692088.  Google Scholar

[13]

G. Pinzari, Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., 18 (2013), 860-906.  doi: 10.1134/S1560354713060178.  Google Scholar

[14]

G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Amer. Math. Soc., 255 (2018). doi: 10.1090/memo/1218.  Google Scholar

[15]

G. Pinzari, A first integral to the partially averaged Newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131 (2019), 30pp. doi: 10.1007/s10569-019-9899-z.  Google Scholar

[16]

H. WaalkensH. R. Dullin and P. H. Richter, The problem of two fixed centers: Bifurcations, actions, monodromy, Phys. D, 196 (2004), 265-310.  doi: 10.1016/j.physd.2004.05.006.  Google Scholar

Figure 1.  The phase portrait of $ {{\rm{E}}}_0 $ in the plane $ ({\rm g}, {{\rm{G}}}) $. Left: $ 0< {\delta}<1 $; Center: $ 0< {\delta}<1 $; Right: $ {\delta}>2 $
Figure 2.  Projection of the motion in the plane (g, G)
Figure 3.  Projection of the motion in the plane $ (\ell, {\Lambda})$
Figure 4.  Projection of the motion in the plane (r; R)
[1]

Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044

[2]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[3]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[4]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[5]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[6]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[7]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[8]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[9]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[10]

Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229

[11]

Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158

[12]

Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379

[13]

Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85

[14]

G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure & Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323

[15]

Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825

[16]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[17]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[18]

Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157

[19]

Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062

[20]

Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]