December  2020, 40(12): 6919-6943. doi: 10.3934/dcds.2020165

Euler integral and perihelion librations

Dipartimento di Matematica "Tullio Levi–Civita", via Trieste, 63, 35121 Padova, Italy

Received  July 2019 Revised  December 2019 Published  March 2020

Fund Project: The author is supported by the European Research Council. Grant 677793 Stable and Chaotic Motions in the Planetary Problem

We discuss dynamical aspects of an analysis of the two–centre problem started in [15]. The perturbative nature of our approach allows us to foresee applications to the three–body problem.

Citation: Gabriella Pinzari. Euler integral and perihelion librations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6919-6943. doi: 10.3934/dcds.2020165
References:
[1]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.   Google Scholar

[2]

A. A. Bekov and T. B. Omarov, Integrable cases of the Hamilton-Jacobi equation and some nonsteady problems of celestial mechanics, Soviet Astronomy, 22 (1978), 366-370.   Google Scholar

[3]

F. Biscani and D. Izzo, A complete and explicit solution to the three-dimensional problem of two fixed centres, Monthly Notices Roy. Astronomical Soc., 455 (2016), 3480-3493.  doi: 10.1093/mnras/stv2512.  Google Scholar

[4]

A. BoscagginA. Dambrosio and S. Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Rational Mech. Anal., 223 (2017), 1269-1306.  doi: 10.1007/s00205-016-1057-0.  Google Scholar

[5]

L. Chierchia and G. Pinzari, Deprit's reduction of the nodes revised, Celestial Mech. Dynam. Astronom., 109 (2011), 285-301.  doi: 10.1007/s10569-010-9329-8.  Google Scholar

[6]

L. Chierchia and G. Pinzari, The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math., 186 (2011), 1-77.  doi: 10.1007/s00222-011-0313-z.  Google Scholar

[7]

A. Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.  doi: 10.1007/BF01234305.  Google Scholar

[8]

H. R. Dullin and R. Montgomery, Syzygies in the two center problem, Nonlinearity, 29 (2016), 1212-1237.  doi: 10.1088/0951-7715/29/4/1212.  Google Scholar

[9]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582.  doi: 10.1017/S0143385704000410.  Google Scholar

[10]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.  doi: 10.1515/crll.1843.26.115.  Google Scholar

[11]

C. G. J. Jacobi, Jacobi's Lectures on Dynamics, Texts and Readings in Mathematics, 51, Hindustan Book Agency, New Delhi, 2009.  Google Scholar

[12]

J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62 (1995), 193-217.  doi: 10.1007/BF00692088.  Google Scholar

[13]

G. Pinzari, Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., 18 (2013), 860-906.  doi: 10.1134/S1560354713060178.  Google Scholar

[14]

G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Amer. Math. Soc., 255 (2018). doi: 10.1090/memo/1218.  Google Scholar

[15]

G. Pinzari, A first integral to the partially averaged Newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131 (2019), 30pp. doi: 10.1007/s10569-019-9899-z.  Google Scholar

[16]

H. WaalkensH. R. Dullin and P. H. Richter, The problem of two fixed centers: Bifurcations, actions, monodromy, Phys. D, 196 (2004), 265-310.  doi: 10.1016/j.physd.2004.05.006.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.   Google Scholar

[2]

A. A. Bekov and T. B. Omarov, Integrable cases of the Hamilton-Jacobi equation and some nonsteady problems of celestial mechanics, Soviet Astronomy, 22 (1978), 366-370.   Google Scholar

[3]

F. Biscani and D. Izzo, A complete and explicit solution to the three-dimensional problem of two fixed centres, Monthly Notices Roy. Astronomical Soc., 455 (2016), 3480-3493.  doi: 10.1093/mnras/stv2512.  Google Scholar

[4]

A. BoscagginA. Dambrosio and S. Terracini, Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Rational Mech. Anal., 223 (2017), 1269-1306.  doi: 10.1007/s00205-016-1057-0.  Google Scholar

[5]

L. Chierchia and G. Pinzari, Deprit's reduction of the nodes revised, Celestial Mech. Dynam. Astronom., 109 (2011), 285-301.  doi: 10.1007/s10569-010-9329-8.  Google Scholar

[6]

L. Chierchia and G. Pinzari, The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math., 186 (2011), 1-77.  doi: 10.1007/s00222-011-0313-z.  Google Scholar

[7]

A. Deprit, Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.  doi: 10.1007/BF01234305.  Google Scholar

[8]

H. R. Dullin and R. Montgomery, Syzygies in the two center problem, Nonlinearity, 29 (2016), 1212-1237.  doi: 10.1088/0951-7715/29/4/1212.  Google Scholar

[9]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582.  doi: 10.1017/S0143385704000410.  Google Scholar

[10]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.  doi: 10.1515/crll.1843.26.115.  Google Scholar

[11]

C. G. J. Jacobi, Jacobi's Lectures on Dynamics, Texts and Readings in Mathematics, 51, Hindustan Book Agency, New Delhi, 2009.  Google Scholar

[12]

J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62 (1995), 193-217.  doi: 10.1007/BF00692088.  Google Scholar

[13]

G. Pinzari, Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., 18 (2013), 860-906.  doi: 10.1134/S1560354713060178.  Google Scholar

[14]

G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Amer. Math. Soc., 255 (2018). doi: 10.1090/memo/1218.  Google Scholar

[15]

G. Pinzari, A first integral to the partially averaged Newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131 (2019), 30pp. doi: 10.1007/s10569-019-9899-z.  Google Scholar

[16]

H. WaalkensH. R. Dullin and P. H. Richter, The problem of two fixed centers: Bifurcations, actions, monodromy, Phys. D, 196 (2004), 265-310.  doi: 10.1016/j.physd.2004.05.006.  Google Scholar

Figure 1.  The phase portrait of $ {{\rm{E}}}_0 $ in the plane $ ({\rm g}, {{\rm{G}}}) $. Left: $ 0< {\delta}<1 $; Center: $ 0< {\delta}<1 $; Right: $ {\delta}>2 $
Figure 2.  Projection of the motion in the plane (g, G)
Figure 3.  Projection of the motion in the plane $ (\ell, {\Lambda})$
Figure 4.  Projection of the motion in the plane (r; R)
[1]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[9]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[16]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[19]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (85)
  • HTML views (304)
  • Cited by (2)

Other articles
by authors

[Back to Top]