
-
Previous Article
Finding polynomial roots by dynamical systems – A case study
- DCDS Home
- This Issue
-
Next Article
Automatic sequences are orthogonal to aperiodic multiplicative functions
Euler integral and perihelion librations
Dipartimento di Matematica "Tullio Levi–Civita", via Trieste, 63, 35121 Padova, Italy |
We discuss dynamical aspects of an analysis of the two–centre problem started in [
References:
[1] |
V. I. Arnold,
Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.
|
[2] |
A. A. Bekov and T. B. Omarov,
Integrable cases of the Hamilton-Jacobi equation and some nonsteady problems of celestial mechanics, Soviet Astronomy, 22 (1978), 366-370.
|
[3] |
F. Biscani and D. Izzo,
A complete and explicit solution to the three-dimensional problem of two fixed centres, Monthly Notices Roy. Astronomical Soc., 455 (2016), 3480-3493.
doi: 10.1093/mnras/stv2512. |
[4] |
A. Boscaggin, A. Dambrosio and S. Terracini,
Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Rational Mech. Anal., 223 (2017), 1269-1306.
doi: 10.1007/s00205-016-1057-0. |
[5] |
L. Chierchia and G. Pinzari,
Deprit's reduction of the nodes revised, Celestial Mech. Dynam. Astronom., 109 (2011), 285-301.
doi: 10.1007/s10569-010-9329-8. |
[6] |
L. Chierchia and G. Pinzari,
The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math., 186 (2011), 1-77.
doi: 10.1007/s00222-011-0313-z. |
[7] |
A. Deprit,
Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.
doi: 10.1007/BF01234305. |
[8] |
H. R. Dullin and R. Montgomery,
Syzygies in the two center problem, Nonlinearity, 29 (2016), 1212-1237.
doi: 10.1088/0951-7715/29/4/1212. |
[9] |
J. Féjoz,
Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582.
doi: 10.1017/S0143385704000410. |
[10] |
C. G. J. Jacobi,
Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.
doi: 10.1515/crll.1843.26.115. |
[11] |
C. G. J. Jacobi, Jacobi's Lectures on Dynamics, Texts and Readings in Mathematics, 51, Hindustan Book Agency, New Delhi, 2009. |
[12] |
J. Laskar and P. Robutel,
Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62 (1995), 193-217.
doi: 10.1007/BF00692088. |
[13] |
G. Pinzari,
Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., 18 (2013), 860-906.
doi: 10.1134/S1560354713060178. |
[14] |
G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Amer. Math. Soc., 255 (2018).
doi: 10.1090/memo/1218. |
[15] |
G. Pinzari, A first integral to the partially averaged Newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131 (2019), 30pp.
doi: 10.1007/s10569-019-9899-z. |
[16] |
H. Waalkens, H. R. Dullin and P. H. Richter,
The problem of two fixed centers: Bifurcations, actions, monodromy, Phys. D, 196 (2004), 265-310.
doi: 10.1016/j.physd.2004.05.006. |
show all references
References:
[1] |
V. I. Arnold,
Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.
|
[2] |
A. A. Bekov and T. B. Omarov,
Integrable cases of the Hamilton-Jacobi equation and some nonsteady problems of celestial mechanics, Soviet Astronomy, 22 (1978), 366-370.
|
[3] |
F. Biscani and D. Izzo,
A complete and explicit solution to the three-dimensional problem of two fixed centres, Monthly Notices Roy. Astronomical Soc., 455 (2016), 3480-3493.
doi: 10.1093/mnras/stv2512. |
[4] |
A. Boscaggin, A. Dambrosio and S. Terracini,
Scattering parabolic solutions for the spatial $N$-centre problem, Arch. Rational Mech. Anal., 223 (2017), 1269-1306.
doi: 10.1007/s00205-016-1057-0. |
[5] |
L. Chierchia and G. Pinzari,
Deprit's reduction of the nodes revised, Celestial Mech. Dynam. Astronom., 109 (2011), 285-301.
doi: 10.1007/s10569-010-9329-8. |
[6] |
L. Chierchia and G. Pinzari,
The planetary $N$-body problem: Symplectic foliation, reductions and invariant tori, Invent. Math., 186 (2011), 1-77.
doi: 10.1007/s00222-011-0313-z. |
[7] |
A. Deprit,
Elimination of the nodes in problems of $n$ bodies, Celestial Mech., 30 (1983), 181-195.
doi: 10.1007/BF01234305. |
[8] |
H. R. Dullin and R. Montgomery,
Syzygies in the two center problem, Nonlinearity, 29 (2016), 1212-1237.
doi: 10.1088/0951-7715/29/4/1212. |
[9] |
J. Féjoz,
Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergodic Theory Dynam. Systems, 24 (2004), 1521-1582.
doi: 10.1017/S0143385704000410. |
[10] |
C. G. J. Jacobi,
Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.
doi: 10.1515/crll.1843.26.115. |
[11] |
C. G. J. Jacobi, Jacobi's Lectures on Dynamics, Texts and Readings in Mathematics, 51, Hindustan Book Agency, New Delhi, 2009. |
[12] |
J. Laskar and P. Robutel,
Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62 (1995), 193-217.
doi: 10.1007/BF00692088. |
[13] |
G. Pinzari,
Aspects of the planetary Birkhoff normal form, Regul. Chaotic Dyn., 18 (2013), 860-906.
doi: 10.1134/S1560354713060178. |
[14] |
G. Pinzari, Perihelia reduction and global Kolmogorov tori in the planetary problem, Mem. Amer. Math. Soc., 255 (2018).
doi: 10.1090/memo/1218. |
[15] |
G. Pinzari, A first integral to the partially averaged Newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131 (2019), 30pp.
doi: 10.1007/s10569-019-9899-z. |
[16] |
H. Waalkens, H. R. Dullin and P. H. Richter,
The problem of two fixed centers: Bifurcations, actions, monodromy, Phys. D, 196 (2004), 265-310.
doi: 10.1016/j.physd.2004.05.006. |




[1] |
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044 |
[2] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[3] |
Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 |
[4] |
Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245 |
[5] |
Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609 |
[6] |
Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523 |
[7] |
Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009 |
[8] |
Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299 |
[9] |
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229 |
[10] |
Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631 |
[11] |
Hiroshi Ozaki, Hiroshi Fukuda, Toshiaki Fujiwara. Determination of motion from orbit in the three-body problem. Conference Publications, 2011, 2011 (Special) : 1158-1166. doi: 10.3934/proc.2011.2011.1158 |
[12] |
Daniel Offin, Hildeberto Cabral. Hyperbolicity for symmetric periodic orbits in the isosceles three body problem. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 379-392. doi: 10.3934/dcdss.2009.2.379 |
[13] |
Kuo-Chang Chen. On Chenciner-Montgomery's orbit in the three-body problem. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 85-90. doi: 10.3934/dcds.2001.7.85 |
[14] |
G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure and Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323 |
[15] |
Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825 |
[16] |
Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733 |
[17] |
Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157 |
[18] |
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062 |
[19] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[20] |
Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]