doi: 10.3934/dcds.2020168

A posteriori error estimates for self-similar solutions to the Euler equations

Mathematics Department, Pennsylvania State University, University Park, PA 16802, USA

* Corresponding author

Received  January 2020 Published  March 2020

The main goal of this paper is to analyze a family of "simplest possible" initial data for which, as shown by numerical simulations, the incompressible Euler equations have multiple solutions. We take here a first step toward a rigorous validation of these numerical results. Namely, we consider the system of equations corresponding to a self-similar solution, restricted to a bounded domain with smooth boundary. Given an approximate solution obtained via a finite dimensional Galerkin method, we establish a posteriori error bounds on the distance between the numerical approximation and the exact solution having the same boundary data.

Citation: Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, doi: 10.3934/dcds.2020168
References:
[1] M. S. Berger, Nonlinearity and Functional Analysis, Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, Academic Press, New York, 1977.   Google Scholar
[2]

F. Bernicot and T. Hmidi, On the global well-posedness for Euler equations with unbounded vorticity, Dyn. Partial Differ. Equ., 12 (2015), 127-155.  doi: 10.4310/DPDE.2015.v12.n2.a3.  Google Scholar

[3]

S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

A. Bressan, Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations, Graduate Studies in Mathematics, 143, American Mathematical Society, Providence, RI, 2013.  Google Scholar

[5]

A. Bressan and R. Murray, On self-similar solutions to the Euler equations, submitted. Google Scholar

[6]

P. Ciarlet and C. Mardare, On the Newton-Kantorovich theorem, Anal. Appl. (Singap.), 10 (2012), 249-269.  doi: 10.1142/S0219530512500121.  Google Scholar

[7]

P. Clément, Approximation by finite element functions using local regularization, Rev. Francaise Automat. Informat. Rech. Opérationnelle Sér., 9 (1975), 77-84.  doi: 10.1051/m2an/197509R200771.  Google Scholar

[8]

S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phys., 329 (2014), 745-786.  doi: 10.1007/s00220-014-1973-5.  Google Scholar

[9]

S. Daneri, E. Runa and L. Székelyhidi, Non-uniqueness for the Euler equations up to Onsager's critical exponent, work in progress. Google Scholar

[10]

S. Daneri and L. Székelyhidi, Non-uniqueness and $h$-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224 (2017), 471-514.  doi: 10.1007/s00205-017-1081-8.  Google Scholar

[11]

C. De Lellis and L. Székelyhidi, The Euler equations as a differential inclusion, Ann. of Math. (2), 170 (2009), 1417-1436. doi: 10.4007/annals.2009.170.1417.  Google Scholar

[12]

C. De Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[13]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[14]

V. Elling, Algebraic spiral solutions of 2d incompressible Euler, J. Differential Equations, 255 (2013), 3749-3787.  doi: 10.1016/j.jde.2013.07.021.  Google Scholar

[15]

V. Elling, Self-Similar 2d Euler solutions with mixed-sign vorticity, Comm. Math. Phys., 348 (2016), 27-68.  doi: 10.1007/s00220-016-2755-z.  Google Scholar

[16]

V. Elling, Algebraic spiral solutions of the 2d incompressible Euler equations, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 323-334.  doi: 10.1007/s00574-016-0141-2.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 224, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[19]

J. R. Kuttler and V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26 (1984), 163-193.  doi: 10.1137/1026033.  Google Scholar

[20]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, 96, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[21]

L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493.  doi: 10.1090/S0025-5718-1990-1011446-7.  Google Scholar

[22]

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.  doi: 10.1007/BF02921318.  Google Scholar

[23]

W. Shen, Matlab codes for the numerical simulation of the incompressible Euler equations., Available from: http://www.personal.psu.edu/wxs27/SimEuler/. Google Scholar

[24]

A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.  Google Scholar

[25]

M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part Ⅰ and Ⅱ, preprint, arXiv: 1805.09426 and arXiv: 1805.09440. Google Scholar

[26]

V. Yudovich, Non-stationary flow of an ideal incompressible liquid, Comp. Math. Math. Phys., 3 (1963), 1407-1457.  doi: 10.1016/0041-5553(63)90247-7.  Google Scholar

show all references

References:
[1] M. S. Berger, Nonlinearity and Functional Analysis, Lectures on Nonlinear Problems in Mathematical Analysis, Pure and Applied Mathematics, Academic Press, New York, 1977.   Google Scholar
[2]

F. Bernicot and T. Hmidi, On the global well-posedness for Euler equations with unbounded vorticity, Dyn. Partial Differ. Equ., 12 (2015), 127-155.  doi: 10.4310/DPDE.2015.v12.n2.a3.  Google Scholar

[3]

S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

A. Bressan, Lecture Notes on Functional Analysis: With Applications to Linear Partial Differential Equations, Graduate Studies in Mathematics, 143, American Mathematical Society, Providence, RI, 2013.  Google Scholar

[5]

A. Bressan and R. Murray, On self-similar solutions to the Euler equations, submitted. Google Scholar

[6]

P. Ciarlet and C. Mardare, On the Newton-Kantorovich theorem, Anal. Appl. (Singap.), 10 (2012), 249-269.  doi: 10.1142/S0219530512500121.  Google Scholar

[7]

P. Clément, Approximation by finite element functions using local regularization, Rev. Francaise Automat. Informat. Rech. Opérationnelle Sér., 9 (1975), 77-84.  doi: 10.1051/m2an/197509R200771.  Google Scholar

[8]

S. Daneri, Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations, Comm. Math. Phys., 329 (2014), 745-786.  doi: 10.1007/s00220-014-1973-5.  Google Scholar

[9]

S. Daneri, E. Runa and L. Székelyhidi, Non-uniqueness for the Euler equations up to Onsager's critical exponent, work in progress. Google Scholar

[10]

S. Daneri and L. Székelyhidi, Non-uniqueness and $h$-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 224 (2017), 471-514.  doi: 10.1007/s00205-017-1081-8.  Google Scholar

[11]

C. De Lellis and L. Székelyhidi, The Euler equations as a differential inclusion, Ann. of Math. (2), 170 (2009), 1417-1436. doi: 10.4007/annals.2009.170.1417.  Google Scholar

[12]

C. De Lellis and L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal., 195 (2010), 225-260.  doi: 10.1007/s00205-008-0201-x.  Google Scholar

[13]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[14]

V. Elling, Algebraic spiral solutions of 2d incompressible Euler, J. Differential Equations, 255 (2013), 3749-3787.  doi: 10.1016/j.jde.2013.07.021.  Google Scholar

[15]

V. Elling, Self-Similar 2d Euler solutions with mixed-sign vorticity, Comm. Math. Phys., 348 (2016), 27-68.  doi: 10.1007/s00220-016-2755-z.  Google Scholar

[16]

V. Elling, Algebraic spiral solutions of the 2d incompressible Euler equations, Bull. Braz. Math. Soc. (N.S.), 47 (2016), 323-334.  doi: 10.1007/s00574-016-0141-2.  Google Scholar

[17]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[18]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 224, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[19]

J. R. Kuttler and V. G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Rev., 26 (1984), 163-193.  doi: 10.1137/1026033.  Google Scholar

[20]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, 96, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[21]

L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493.  doi: 10.1090/S0025-5718-1990-1011446-7.  Google Scholar

[22]

V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343-401.  doi: 10.1007/BF02921318.  Google Scholar

[23]

W. Shen, Matlab codes for the numerical simulation of the incompressible Euler equations., Available from: http://www.personal.psu.edu/wxs27/SimEuler/. Google Scholar

[24]

A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Comm. Pure Appl. Math., 50 (1997), 1261-1286.  doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6.  Google Scholar

[25]

M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part Ⅰ and Ⅱ, preprint, arXiv: 1805.09426 and arXiv: 1805.09440. Google Scholar

[26]

V. Yudovich, Non-stationary flow of an ideal incompressible liquid, Comp. Math. Math. Phys., 3 (1963), 1407-1457.  doi: 10.1016/0041-5553(63)90247-7.  Google Scholar

Figure 2.  The vorticity distribution at time $ t = 1 $, for a solution to (1.2) with initial vorticity $ \overline \omega_\varepsilon $
Figure 3.  The vorticity distribution at time $ t = 1 $, for a solution to (1.2) with initial vorticity $ \overline\omega_\varepsilon^\dagger $
Figure 1.  The supports of the initial vorticity considered in (1.3)-(1.5)
Figure 4.  Decomposing the plane $ {\mathbb R}^2 = {\mathcal D}^\sharp\cup{\mathcal D}^\natural\cup{\mathcal D}^\flat $ into an outer, a middle, and an inner domain. Left: the case of a single spiraling vortex, as in Fig. 2. Right: the case of two spiraling vortices, as in Fig. 3
Figure 5.  According to (A1), every characteristic starting at a point $ y\in \Sigma_1\cap {\rm Supp }(h) $ exits from the domain $ {\mathcal D} $ at some boundary point $ z = z(y)\in \Sigma_2 $, at a time $ T(y)\leq T^* $. The shaded region represents the subdomain $ {\mathcal D}^* $ in (2.10)
Figure 6.  Computing the perturbed solution $ \Omega^\varepsilon(y) $ in (3.4), by estimating the change in the characteristic through $ y $
[1]

Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002

[2]

Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101

[3]

F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91

[4]

Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations & Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003

[5]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[6]

Dongho Chae, Kyungkeun Kang, Jihoon Lee. Notes on the asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1181-1193. doi: 10.3934/dcds.2009.25.1181

[7]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[8]

Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471

[9]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[10]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[11]

Bendong Lou. Self-similar solutions in a sector for a quasilinear parabolic equation. Networks & Heterogeneous Media, 2012, 7 (4) : 857-879. doi: 10.3934/nhm.2012.7.857

[12]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[13]

Marek Fila, Michael Winkler, Eiji Yanagida. Convergence to self-similar solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 703-716. doi: 10.3934/dcds.2008.21.703

[14]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[15]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[16]

Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785

[17]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[18]

Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323

[19]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[20]

Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]