-
Previous Article
A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth
- DCDS Home
- This Issue
-
Next Article
Turing type instability in a diffusion model with mass transport on the boundary
Indefinite nonlinear diffusion problem in population genetics
Tokyo University of Marine Science and Technology, 4-5-7 Kounan, Minato-ku, Tokyo, 108-8477, Japan |
$ \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}{u_t} = du'' + g(x){u^2}(1 - u)\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\0 \le u \le 1\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\u'(0,t) = u'(1,t) = 0\quad {\rm{in}}\quad (0,\infty ),\end{array}\end{array}} \right.$ |
$ g $ |
$ (0, 1) $ |
$ U_d $ |
$ d $ |
$ U_d $ |
$ \int_{0}^1\, g(x)\, dx\geq 0 $ |
References:
[1] |
Y. Lou and T. Nagylaki,
A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.
doi: 10.1006/jdeq.2001.4086. |
[2] |
Y. Lou, T. Nagylaki and W.-M. Ni,
An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.
doi: 10.3934/dcds.2013.33.4349. |
[3] |
Y. Lou, W.-M. Ni and L. Su,
An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.
doi: 10.3934/dcds.2010.27.643. |
[4] |
T. Nagylaki,
Conditions for the existence of clines, Genetics, 80 (1975), 595-615.
|
[5] |
T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259.
doi: 10.1016/j.tpb.2009.01.004. |
[6] |
T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170.
doi: 10.1007/978-3-540-74331-6_4. |
[7] |
K. Nakashima, W.-M. Ni and L. Su,
An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.
doi: 10.3934/dcds.2010.27.617. |
[8] |
K. Nakashima,
The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.
doi: 10.1016/j.jde.2016.08.041. |
[9] |
K. Nakashima,
The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.
doi: 10.1016/j.jde.2017.10.014. |
[10] |
K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress.
doi: 10.1016/j.jde.2019.11.082. |
show all references
References:
[1] |
Y. Lou and T. Nagylaki,
A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.
doi: 10.1006/jdeq.2001.4086. |
[2] |
Y. Lou, T. Nagylaki and W.-M. Ni,
An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.
doi: 10.3934/dcds.2013.33.4349. |
[3] |
Y. Lou, W.-M. Ni and L. Su,
An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.
doi: 10.3934/dcds.2010.27.643. |
[4] |
T. Nagylaki,
Conditions for the existence of clines, Genetics, 80 (1975), 595-615.
|
[5] |
T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259.
doi: 10.1016/j.tpb.2009.01.004. |
[6] |
T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170.
doi: 10.1007/978-3-540-74331-6_4. |
[7] |
K. Nakashima, W.-M. Ni and L. Su,
An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.
doi: 10.3934/dcds.2010.27.617. |
[8] |
K. Nakashima,
The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.
doi: 10.1016/j.jde.2016.08.041. |
[9] |
K. Nakashima,
The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.
doi: 10.1016/j.jde.2017.10.014. |
[10] |
K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress.
doi: 10.1016/j.jde.2019.11.082. |
[1] |
Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868 |
[2] |
Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137 |
[3] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 |
[4] |
Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[5] |
Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516 |
[6] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[7] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[8] |
M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 |
[9] |
Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165 |
[10] |
Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173 |
[11] |
Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 |
[12] |
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 |
[13] |
Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859 |
[14] |
Razvan Gabriel Iagar, Ariel Sánchez. Eternal solutions for a reaction-diffusion equation with weighted reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1465-1491. doi: 10.3934/dcds.2021160 |
[15] |
Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 |
[16] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[17] |
Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 |
[18] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[19] |
Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407 |
[20] |
Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]