June  2020, 40(6): 3837-3855. doi: 10.3934/dcds.2020169

Indefinite nonlinear diffusion problem in population genetics

Tokyo University of Marine Science and Technology, 4-5-7 Kounan, Minato-ku, Tokyo, 108-8477, Japan

Received  April 2019 Revised  January 2020 Published  March 2020

We study the following Neumann problem in one dimension,
$ \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}{u_t} = du'' + g(x){u^2}(1 - u)\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\0 \le u \le 1\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\u'(0,t) = u'(1,t) = 0\quad {\rm{in}}\quad (0,\infty ),\end{array}\end{array}} \right.$
where
$ g $
changes sign in
$ (0, 1) $
. This equation models the "complete dominance" case in population genetics of two alleles. It is known that this equation has a nontrivial stable steady state
$ U_d $
for
$ d $
sufficiently small. We show that
$ U_d $
is a unique nontrivial steady state under a condition
$ \int_{0}^1\, g(x)\, dx\geq 0 $
and some other additional condition.
Citation: Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169
References:
[1]

Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086.  Google Scholar

[2]

Y. LouT. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349.  Google Scholar

[3]

Y. LouW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.  doi: 10.3934/dcds.2010.27.643.  Google Scholar

[4]

T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615.   Google Scholar

[5]

T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259. doi: 10.1016/j.tpb.2009.01.004.  Google Scholar

[6]

T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170. doi: 10.1007/978-3-540-74331-6_4.  Google Scholar

[7]

K. NakashimaW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.  doi: 10.3934/dcds.2010.27.617.  Google Scholar

[8]

K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041.  Google Scholar

[9]

K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014.  Google Scholar

[10]

K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress. doi: 10.1016/j.jde.2019.11.082.  Google Scholar

show all references

References:
[1]

Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086.  Google Scholar

[2]

Y. LouT. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349.  Google Scholar

[3]

Y. LouW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.  doi: 10.3934/dcds.2010.27.643.  Google Scholar

[4]

T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615.   Google Scholar

[5]

T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259. doi: 10.1016/j.tpb.2009.01.004.  Google Scholar

[6]

T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170. doi: 10.1007/978-3-540-74331-6_4.  Google Scholar

[7]

K. NakashimaW.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.  doi: 10.3934/dcds.2010.27.617.  Google Scholar

[8]

K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041.  Google Scholar

[9]

K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014.  Google Scholar

[10]

K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress. doi: 10.1016/j.jde.2019.11.082.  Google Scholar

[1]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[10]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[11]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (99)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]