American Institute of Mathematical Sciences

June  2020, 40(6): 3837-3855. doi: 10.3934/dcds.2020169

Indefinite nonlinear diffusion problem in population genetics

 Tokyo University of Marine Science and Technology, 4-5-7 Kounan, Minato-ku, Tokyo, 108-8477, Japan

Received  April 2019 Revised  January 2020 Published  March 2020

We study the following Neumann problem in one dimension,
 $\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}{u_t} = du'' + g(x){u^2}(1 - u)\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\0 \le u \le 1\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\u'(0,t) = u'(1,t) = 0\quad {\rm{in}}\quad (0,\infty ),\end{array}\end{array}} \right.$
where
 $g$
 $(0, 1)$
. This equation models the "complete dominance" case in population genetics of two alleles. It is known that this equation has a nontrivial stable steady state
 $U_d$
for
 $d$
sufficiently small. We show that
 $U_d$
is a unique nontrivial steady state under a condition
 $\int_{0}^1\, g(x)\, dx\geq 0$
Citation: Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169
References:
 [1] Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086. [2] Y. Lou, T. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349. [3] Y. Lou, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.  doi: 10.3934/dcds.2010.27.643. [4] T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615. [5] T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259. doi: 10.1016/j.tpb.2009.01.004. [6] T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170. doi: 10.1007/978-3-540-74331-6_4. [7] K. Nakashima, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.  doi: 10.3934/dcds.2010.27.617. [8] K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041. [9] K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014. [10] K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress. doi: 10.1016/j.jde.2019.11.082.

show all references

References:
 [1] Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.  doi: 10.1006/jdeq.2001.4086. [2] Y. Lou, T. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.  doi: 10.3934/dcds.2013.33.4349. [3] Y. Lou, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.  doi: 10.3934/dcds.2010.27.643. [4] T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615. [5] T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259. doi: 10.1016/j.tpb.2009.01.004. [6] T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170. doi: 10.1007/978-3-540-74331-6_4. [7] K. Nakashima, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.  doi: 10.3934/dcds.2010.27.617. [8] K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.  doi: 10.1016/j.jde.2016.08.041. [9] K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.  doi: 10.1016/j.jde.2017.10.014. [10] K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress. doi: 10.1016/j.jde.2019.11.082.
 [1] Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868 [2] Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137 [3] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897 [4] Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009 [5] Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516 [6] Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 [7] Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 [8] M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079 [9] Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165 [10] Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173 [11] Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382 [12] Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 [13] Kin Ming Hui, Sunghoon Kim. Existence of Neumann and singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4859-4887. doi: 10.3934/dcds.2015.35.4859 [14] Razvan Gabriel Iagar, Ariel Sánchez. Eternal solutions for a reaction-diffusion equation with weighted reaction. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1465-1491. doi: 10.3934/dcds.2021160 [15] Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246 [16] Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 [17] Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 [18] Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 [19] Elena Trofimchuk, Sergei Trofimchuk. Admissible wavefront speeds for a single species reaction-diffusion equation with delay. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 407-423. doi: 10.3934/dcds.2008.20.407 [20] Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

2021 Impact Factor: 1.588