We study the following Neumann problem in one dimension,
$ \left\{ {\begin{array}{*{20}{l}}\begin{array}{l}{u_t} = du'' + g(x){u^2}(1 - u)\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\0 \le u \le 1\quad {\rm{in}}\quad (0,1) \times (0,\infty ),\;\\u'(0,t) = u'(1,t) = 0\quad {\rm{in}}\quad (0,\infty ),\end{array}\end{array}} \right.$
where $ g $ changes sign in $ (0, 1) $. This equation models the "complete dominance" case in population genetics of two alleles. It is known that this equation has a nontrivial stable steady state $ U_d $ for $ d $ sufficiently small. We show that $ U_d $ is a unique nontrivial steady state under a condition $ \int_{0}^1\, g(x)\, dx\geq 0 $ and some other additional condition.
Citation: |
[1] |
Y. Lou and T. Nagylaki, A semilinear parabolic system for migration and selection in population gentics, J. Differential Equations, 181 (2002), 388-418.
doi: 10.1006/jdeq.2001.4086.![]() ![]() ![]() |
[2] |
Y. Lou, T. Nagylaki and W.-M. Ni, An introduction to migration-selection PDE models, Discrete Contin. Dyn. Syst., 33 (2013), 4349-4373.
doi: 10.3934/dcds.2013.33.4349.![]() ![]() ![]() |
[3] |
Y. Lou, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅱ. Stability and multiplicity, Discrete Contin. Dyn. Syst., 27 (2010), 643-655.
doi: 10.3934/dcds.2010.27.643.![]() ![]() ![]() |
[4] |
T. Nagylaki, Conditions for the existence of clines, Genetics, 80 (1975), 595-615.
![]() |
[5] |
T. Nagylaki, Polymorphism in multiallelic migration-selection models with dominance, Theoret. Population Biol., 75 (2009), 239-259.
doi: 10.1016/j.tpb.2009.01.004.![]() ![]() |
[6] |
T. Nagylaki and Y. Lou, The dynamics of migration-selection models, in "Tutorials in Mathematical Biosciences. IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,117–170.
doi: 10.1007/978-3-540-74331-6_4.![]() ![]() ![]() |
[7] |
K. Nakashima, W.-M. Ni and L. Su, An indefinite nonlinear diffusion problem in population genetics. Ⅰ. Existence, Discrete Contin. Dyn. Syst., 27 (2010), 617-641.
doi: 10.3934/dcds.2010.27.617.![]() ![]() ![]() |
[8] |
K. Nakashima, The uniqueness of indefinite nonlinear diffusion problem in population genetics, part Ⅰ, J. Differential Equations, 261 (2016), 6233-6282.
doi: 10.1016/j.jde.2016.08.041.![]() ![]() ![]() |
[9] |
K. Nakashima, The uniqueness of an indefinite nonlinear diffusion problem in population genetics, part Ⅱ, J. Differential Equations, 264 (2018), 1946-1983.
doi: 10.1016/j.jde.2017.10.014.![]() ![]() ![]() |
[10] |
K. Nakashima, Multiple existence of indefinite nonlinear diffusion problem in population genetics, J. Differential Equations, work in progress.
doi: 10.1016/j.jde.2019.11.082.![]() ![]() |