
-
Previous Article
Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation
- DCDS Home
- This Issue
-
Next Article
Asymmetric dispersal and evolutional selection in two-patch system
Hysteresis-driven pattern formation in reaction-diffusion-ODE systems
1. | Institute of Applied Mathematics and Bioquant, Heidelberg University, Heidelberg, 69120, Germany |
2. | Institute of Applied Mathematics, Bioquant and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, 69120, Germany |
3. | Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China |
4. | Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan |
The paper is devoted to analysis of far-from-equilibrium pattern formation in a system of a reaction-diffusion equation and an ordinary differential equation (ODE). Such systems arise in modeling of interactions between cellular processes and diffusing growth factors. Pattern formation results from hysteresis in the dependence of the quasi-stationary solution of the ODE on the diffusive component. Bistability alone, without hysteresis, does not result in stable patterns. We provide a systematic description of the hysteresis-driven stationary solutions, which may be monotone, periodic or irregular. We prove existence of infinitely many stationary solutions with jump discontinuity and their asymptotic stability for a certain class of reaction-diffusion-ODE systems. Nonlinear stability is proved using direct estimates of the model nonlinearities and properties of the strongly continuous diffusion semigroup.
References:
[1] |
D. Angeli, J. E. Ferrell and E. D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, PNAS, 101 (2004), 1822–1827.
doi: 10.1073/pnas.0308265100. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
D. G. Aronson, A. Tesei and H. Weinberger,
A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.
doi: 10.1007/BF01766153. |
[4] |
J. E. Ferrell and W. Xiong,
Bistability in cell signaling: How to make continuos processes discontinous, and reversible processes irreversible, Chaos, 11 (2001), 227-236.
doi: 10.1063/1.1349894. |
[5] |
T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek and D. W. Tank,
Stability and nuclear dynamics of the bicoid morphogen gradient, Cell, 130 (2007), 141-152.
doi: 10.1016/j.cell.2007.05.026. |
[6] |
S. Härting, A. Marciniak-Czochra and I. Takagi,
Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst. Ser. A., 37 (2017), 757-800.
doi: 10.3934/dcds.2017032. |
[7] |
S. Härting and A. Marciniak-Czochra,
Spike patterns in a reaction-diffusion-ode model with Turing instability, Math. Meth. Appl. Sci., 37 (2014), 1377-1391.
|
[8] |
S. Hock, Y. Ng, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach, W. Wurst, N. Prakash and F. J. Theis, Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation, BMC Syst. Biol., 7 (2013), 48.
doi: 10.1186/1752-0509-7-48. |
[9] |
J. Jaros and T. Kusano,
A picone type identity for second order half-linear differential equations, Acta Math. Univ. Comenian, 68 (1999), 137-151.
|
[10] |
V. Klika, R. Baker, D. Headon and E. Gaffney,
The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization, Bulletin of Mathematical Biology, 74 (2012), 935-957.
doi: 10.1007/s11538-011-9699-4. |
[11] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[12] |
K. Korvasová, E. A. Gaffney, P. K. Maini, M. A. Ferreira and V. Klika,
Investigating the turing conditions for diffusion-driven instability in the presence of a binding immobile substrate, J. Theor. Biol., 367 (2015), 286-295.
doi: 10.1016/j.jtbi.2014.11.024. |
[13] |
Y. Li, A. Marciniak-Czochra, I. Takagi and B. Wu,
Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Math. J., 47 (2017), 217-247.
doi: 10.32917/hmj/1499392826. |
[14] |
W. S. Loud, "Periodic solutions of $x'' +cx' +g(x) = \epsilon f(t)''$, Mem. Amer. Math. Soc., 31 1959, 58 pp. |
[15] |
A. Marasco and et al.,
Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback, Bull. Math. Biol., 76 (2014), 2866-2883.
doi: 10.1007/s11538-014-0036-6. |
[16] |
A. Marciniak-Czochra,
Receptor-based models with diffusion-driven instability for pattern formation in hydra, J. Biol. Sys., 11 (2003), 293-324.
doi: 10.1142/S0218339003000889. |
[17] |
A. Marciniak-Czochra,
Receptor-based models with hysteresis for pattern formation in hydra, Math. Biosci., 199 (2006), 97-119.
doi: 10.1016/j.mbs.2005.10.004. |
[18] |
A. Marciniak-Czochra,
Strong two-scale convergence and corrector result for the receptor-based model of the intercellular communication, IMA J. Appl. Math., 77 (2012), 855-868.
doi: 10.1093/imamat/hxs052. |
[19] |
A. Marciniak-Czochra, G. Karch and K. Suzuki, Instability of Turing patterns in reaction-diffusion-ODE systems, J. Math. Biol. 74 (2017), 583-618.
doi: 10.1007/s00285-016-1035-z. |
[20] |
A. Marciniak-Czochra, G. Karch and K. Suzuki,
Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., 99 (2013), 509-543.
doi: 10.1016/j.matpur.2012.09.011. |
[21] |
A. Marciniak-Czochra and M. Kimmel,
Modeling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells, Math. Models Methods Appl. Sci., 17 (2007), 1693-1719.
doi: 10.1142/S0218202507002443. |
[22] |
A. Marciniak-Czochra, M. Nakayama and I. Takagi,
Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.
|
[23] |
A. Marciniak-Czochra and M. Ptashnyk,
Derivation of a macroscopic receptor-based model using homogenization techniques., SIAM J. Math. Anal., 40 (2008), 215-237.
doi: 10.1137/050645269. |
[24] |
M. Mimura, M. Tabata and Y. Hosono,
Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal., 11 (1980), 613-631.
doi: 10.1137/0511057. |
[25] |
C. Niehrs, The Spemann organizer and embryonic head induction, EMBO J., 20 (2001), 631-637. Google Scholar |
[26] |
K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H.M.. Byrne, V. Cristini and J. Lowengrub,
Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy,, J. Biol. Dyn., 6 (2012), 54-71.
doi: 10.1080/17513758.2011.590610. |
[27] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, 1984.
doi: 10.1007/BFb0099278. |
[28] |
R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, 1458, Springer, 1990.
doi: 10.1007/BFb0098346. |
[29] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 258, Springer, New York; Heidelberg; Berlin, 1983. |
[30] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[31] |
D. M. Umulis, M. Serpe, M. B. O'Connor and H. G. Othmer,
Robust, bistable patterning of the dorsal surface of the Drosophila embryo,, Proc. Nat. Ac. Sci., 103 (2006), 11613-11618.
doi: 10.1073/pnas.0510398103. |
show all references
References:
[1] |
D. Angeli, J. E. Ferrell and E. D. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems, PNAS, 101 (2004), 1822–1827.
doi: 10.1073/pnas.0308265100. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
D. G. Aronson, A. Tesei and H. Weinberger,
A density-dependent diffusion system with stable discontinuous stationary solutions, Ann. Mat. Pura Appl., 152 (1988), 259-280.
doi: 10.1007/BF01766153. |
[4] |
J. E. Ferrell and W. Xiong,
Bistability in cell signaling: How to make continuos processes discontinous, and reversible processes irreversible, Chaos, 11 (2001), 227-236.
doi: 10.1063/1.1349894. |
[5] |
T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek and D. W. Tank,
Stability and nuclear dynamics of the bicoid morphogen gradient, Cell, 130 (2007), 141-152.
doi: 10.1016/j.cell.2007.05.026. |
[6] |
S. Härting, A. Marciniak-Czochra and I. Takagi,
Stable patterns with jump discontinuity in systems with Turing instability and hysteresis, Discrete Contin. Dyn. Syst. Ser. A., 37 (2017), 757-800.
doi: 10.3934/dcds.2017032. |
[7] |
S. Härting and A. Marciniak-Czochra,
Spike patterns in a reaction-diffusion-ode model with Turing instability, Math. Meth. Appl. Sci., 37 (2014), 1377-1391.
|
[8] |
S. Hock, Y. Ng, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach, W. Wurst, N. Prakash and F. J. Theis, Sharpening of expression domains induced by transcription and microRNA regulation within a spatio-temporal model of mid-hindbrain boundary formation, BMC Syst. Biol., 7 (2013), 48.
doi: 10.1186/1752-0509-7-48. |
[9] |
J. Jaros and T. Kusano,
A picone type identity for second order half-linear differential equations, Acta Math. Univ. Comenian, 68 (1999), 137-151.
|
[10] |
V. Klika, R. Baker, D. Headon and E. Gaffney,
The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organization, Bulletin of Mathematical Biology, 74 (2012), 935-957.
doi: 10.1007/s11538-011-9699-4. |
[11] |
S. Kondo and T. Miura,
Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616-1620.
doi: 10.1126/science.1179047. |
[12] |
K. Korvasová, E. A. Gaffney, P. K. Maini, M. A. Ferreira and V. Klika,
Investigating the turing conditions for diffusion-driven instability in the presence of a binding immobile substrate, J. Theor. Biol., 367 (2015), 286-295.
doi: 10.1016/j.jtbi.2014.11.024. |
[13] |
Y. Li, A. Marciniak-Czochra, I. Takagi and B. Wu,
Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis, Hiroshima Math. J., 47 (2017), 217-247.
doi: 10.32917/hmj/1499392826. |
[14] |
W. S. Loud, "Periodic solutions of $x'' +cx' +g(x) = \epsilon f(t)''$, Mem. Amer. Math. Soc., 31 1959, 58 pp. |
[15] |
A. Marasco and et al.,
Vegetation pattern formation due to interactions between water availability and toxicity in plant-soil feedback, Bull. Math. Biol., 76 (2014), 2866-2883.
doi: 10.1007/s11538-014-0036-6. |
[16] |
A. Marciniak-Czochra,
Receptor-based models with diffusion-driven instability for pattern formation in hydra, J. Biol. Sys., 11 (2003), 293-324.
doi: 10.1142/S0218339003000889. |
[17] |
A. Marciniak-Czochra,
Receptor-based models with hysteresis for pattern formation in hydra, Math. Biosci., 199 (2006), 97-119.
doi: 10.1016/j.mbs.2005.10.004. |
[18] |
A. Marciniak-Czochra,
Strong two-scale convergence and corrector result for the receptor-based model of the intercellular communication, IMA J. Appl. Math., 77 (2012), 855-868.
doi: 10.1093/imamat/hxs052. |
[19] |
A. Marciniak-Czochra, G. Karch and K. Suzuki, Instability of Turing patterns in reaction-diffusion-ODE systems, J. Math. Biol. 74 (2017), 583-618.
doi: 10.1007/s00285-016-1035-z. |
[20] |
A. Marciniak-Czochra, G. Karch and K. Suzuki,
Unstable patterns in reaction-diffusion model of early carcinogenesis, J. Math. Pures Appl., 99 (2013), 509-543.
doi: 10.1016/j.matpur.2012.09.011. |
[21] |
A. Marciniak-Czochra and M. Kimmel,
Modeling of early lung cancer progression: Influence of growth factor production and cooperation between partially transformed cells, Math. Models Methods Appl. Sci., 17 (2007), 1693-1719.
doi: 10.1142/S0218202507002443. |
[22] |
A. Marciniak-Czochra, M. Nakayama and I. Takagi,
Pattern formation in a diffusion-ODE model with hysteresis, Differential Integral Equations, 28 (2015), 655-694.
|
[23] |
A. Marciniak-Czochra and M. Ptashnyk,
Derivation of a macroscopic receptor-based model using homogenization techniques., SIAM J. Math. Anal., 40 (2008), 215-237.
doi: 10.1137/050645269. |
[24] |
M. Mimura, M. Tabata and Y. Hosono,
Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal., 11 (1980), 613-631.
doi: 10.1137/0511057. |
[25] |
C. Niehrs, The Spemann organizer and embryonic head induction, EMBO J., 20 (2001), 631-637. Google Scholar |
[26] |
K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H.M.. Byrne, V. Cristini and J. Lowengrub,
Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy,, J. Biol. Dyn., 6 (2012), 54-71.
doi: 10.1080/17513758.2011.590610. |
[27] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, 1984.
doi: 10.1007/BFb0099278. |
[28] |
R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, 1458, Springer, 1990.
doi: 10.1007/BFb0098346. |
[29] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 258, Springer, New York; Heidelberg; Berlin, 1983. |
[30] |
A. M. Turing,
The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[31] |
D. M. Umulis, M. Serpe, M. B. O'Connor and H. G. Othmer,
Robust, bistable patterning of the dorsal surface of the Drosophila embryo,, Proc. Nat. Ac. Sci., 103 (2006), 11613-11618.
doi: 10.1073/pnas.0510398103. |








[1] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[2] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[3] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[4] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[5] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[6] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[7] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[8] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[9] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[10] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[11] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[12] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[13] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[14] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[15] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[16] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[17] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[18] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[19] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[20] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]