The principal aim of this paper is to construct an explicit sequence of weighted divergence free vector fields which accelerates the rate of convergence of planar Ornstein-Uhlenbeck diffusion to its equilibrium state. The rate of convergence is expressed in terms of the spectral gap of the diffusion generator. We construct an explicit sequence of vector fields which pushes the spectral gap to infinity. The acceleration of the diffusion results from the strong oscillation of the flow lines generated by the vector field.
Citation: |
[1] |
R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975.
![]() ![]() |
[2] |
P. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0076330.![]() ![]() ![]() |
[3] |
I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984.
![]() ![]() |
[4] |
P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow, Ann. of Math. (2), 168 (2008), 643-674.
doi: 10.4007/annals.2008.168.643.![]() ![]() ![]() |
[5] |
B. Franke, Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift, Math. Z., 246 (2004), 373-403.
doi: 10.1007/s00209-003-0604-1.![]() ![]() ![]() |
[6] |
B. Franke, C.-R. Hwang, H.-M. Pai and S.-J. Sheu, The behavior of the spectral gap under growing drift, Trans. Amer. Math. Soc., 362 (2010), 1325-1350.
doi: 10.1090/S0002-9947-09-04939-3.![]() ![]() ![]() |
[7] |
B. Franke and N. Yaakoubi, On how to use drift to push the spectral gap of a diffusion on $S^{2}$ to infinity, Quart. Appl. Math., 74 (2016), 321-335.
doi: 10.1090/qam/1426.![]() ![]() ![]() |
[8] |
B. Franke and N. Yaakoubi, Accelerating diffusion on compact Riemannian surfaces by incompressible drift, Anal. Appl. (Singap.), 15 (2017), 653-666.
doi: 10.1142/S0219530516500184.![]() ![]() ![]() |
[9] |
S. Geman and C.-R. Hwang, Diffusion for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.
doi: 10.1137/0324060.![]() ![]() ![]() |
[10] |
P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, MA, 1982.
![]() ![]() |
[11] |
C.-R. Hwang, S.-Y. Hwang-Ma and S.-J. Sheu, Accelerating Gaussian diffusions, Ann. Appl. Probab., 3 (1993), 897-913.
doi: 10.1214/aoap/1177005371.![]() ![]() ![]() |
[12] |
C.-R. Hwang, S.-Y. Hwang-Ma and S.-J. Sheu, Accelerating diffusions, Ann. Appl. Probab., 15 (2005), 1433-1444.
doi: 10.1214/105051605000000025.![]() ![]() ![]() |
[13] |
C.-R. Hwang, R. Normand and S.-J. Wu, Variance reduction for diffusions, Stochastic Process. Appl., 125 (2015), 3522-3540.
doi: 10.1016/j.spa.2015.03.006.![]() ![]() ![]() |
[14] |
C.-R. Hwang and H.-M. Pai, Accelerating Brownian motion on $N$-torus, Statist. Probab. Lett., 83 (2013), 1443-1447.
doi: 10.1016/j.spl.2013.02.009.![]() ![]() ![]() |
[15] |
N. Yaakoubi, Accélération Explicite des Diffusions par des Flots Incompressibles sur des Espaces Bidimensionnels, Ph.D thesis, University of Sfax in Tunisia, 2016.
![]() |
[16] |
W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1015-3.![]() ![]() ![]() |