July  2020, 40(7): 4093-4112. doi: 10.3934/dcds.2020173

Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift

1. 

Laboratoire d'Algèbre, Géométrie, Théorie Spectrale LR 11 ES 53, Faculté des Sciences de Sfax, Univerité de Sfax, 3.5 km, Route de la Soukra, B.P. 1171, Sfax 3000, Tunisia

2. 

Laboratoire de Mathématiques de Bretagne Atlantique, UMR CNRS 6205, Université de Brest, UFR Sciences et Techniques, 6 Avenue Le Gorgeu, 29200 Brest, France

3. 

ESPRIT - Ecole Supérieure Privée d'Ingénierie et de Technologies, Pôle Technologique El Ghazela, Ariana 2083, Tunisia

* Corresponding author: Brice Franke

Received  June 2018 Revised  February 2019 Published  April 2020

Fund Project: This research was supported by the french tunisian research grant PHC Utique CMCU16G1505

The principal aim of this paper is to construct an explicit sequence of weighted divergence free vector fields which accelerates the rate of convergence of planar Ornstein-Uhlenbeck diffusion to its equilibrium state. The rate of convergence is expressed in terms of the spectral gap of the diffusion generator. We construct an explicit sequence of vector fields which pushes the spectral gap to infinity. The acceleration of the diffusion results from the strong oscillation of the flow lines generated by the vector field.

Citation: Mondher Damak, Brice Franke, Nejib Yaakoubi. Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4093-4112. doi: 10.3934/dcds.2020173
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. 
[2]

P. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0076330.

[3] I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984. 
[4]

P. ConstantinA. KiselevL. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow, Ann. of Math. (2), 168 (2008), 643-674.  doi: 10.4007/annals.2008.168.643.

[5]

B. Franke, Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift, Math. Z., 246 (2004), 373-403.  doi: 10.1007/s00209-003-0604-1.

[6]

B. FrankeC.-R. HwangH.-M. Pai and S.-J. Sheu, The behavior of the spectral gap under growing drift, Trans. Amer. Math. Soc., 362 (2010), 1325-1350.  doi: 10.1090/S0002-9947-09-04939-3.

[7]

B. Franke and N. Yaakoubi, On how to use drift to push the spectral gap of a diffusion on $S^{2}$ to infinity, Quart. Appl. Math., 74 (2016), 321-335.  doi: 10.1090/qam/1426.

[8]

B. Franke and N. Yaakoubi, Accelerating diffusion on compact Riemannian surfaces by incompressible drift, Anal. Appl. (Singap.), 15 (2017), 653-666.  doi: 10.1142/S0219530516500184.

[9]

S. Geman and C.-R. Hwang, Diffusion for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.  doi: 10.1137/0324060.

[10]

P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, MA, 1982.

[11]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating Gaussian diffusions, Ann. Appl. Probab., 3 (1993), 897-913.  doi: 10.1214/aoap/1177005371.

[12]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating diffusions, Ann. Appl. Probab., 15 (2005), 1433-1444.  doi: 10.1214/105051605000000025.

[13]

C.-R. HwangR. Normand and S.-J. Wu, Variance reduction for diffusions, Stochastic Process. Appl., 125 (2015), 3522-3540.  doi: 10.1016/j.spa.2015.03.006.

[14]

C.-R. Hwang and H.-M. Pai, Accelerating Brownian motion on $N$-torus, Statist. Probab. Lett., 83 (2013), 1443-1447.  doi: 10.1016/j.spl.2013.02.009.

[15]

N. Yaakoubi, Accélération Explicite des Diffusions par des Flots Incompressibles sur des Espaces Bidimensionnels, Ph.D thesis, University of Sfax in Tunisia, 2016.

[16]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975. 
[2]

P. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0076330.

[3] I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984. 
[4]

P. ConstantinA. KiselevL. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow, Ann. of Math. (2), 168 (2008), 643-674.  doi: 10.4007/annals.2008.168.643.

[5]

B. Franke, Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift, Math. Z., 246 (2004), 373-403.  doi: 10.1007/s00209-003-0604-1.

[6]

B. FrankeC.-R. HwangH.-M. Pai and S.-J. Sheu, The behavior of the spectral gap under growing drift, Trans. Amer. Math. Soc., 362 (2010), 1325-1350.  doi: 10.1090/S0002-9947-09-04939-3.

[7]

B. Franke and N. Yaakoubi, On how to use drift to push the spectral gap of a diffusion on $S^{2}$ to infinity, Quart. Appl. Math., 74 (2016), 321-335.  doi: 10.1090/qam/1426.

[8]

B. Franke and N. Yaakoubi, Accelerating diffusion on compact Riemannian surfaces by incompressible drift, Anal. Appl. (Singap.), 15 (2017), 653-666.  doi: 10.1142/S0219530516500184.

[9]

S. Geman and C.-R. Hwang, Diffusion for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.  doi: 10.1137/0324060.

[10]

P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, MA, 1982.

[11]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating Gaussian diffusions, Ann. Appl. Probab., 3 (1993), 897-913.  doi: 10.1214/aoap/1177005371.

[12]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating diffusions, Ann. Appl. Probab., 15 (2005), 1433-1444.  doi: 10.1214/105051605000000025.

[13]

C.-R. HwangR. Normand and S.-J. Wu, Variance reduction for diffusions, Stochastic Process. Appl., 125 (2015), 3522-3540.  doi: 10.1016/j.spa.2015.03.006.

[14]

C.-R. Hwang and H.-M. Pai, Accelerating Brownian motion on $N$-torus, Statist. Probab. Lett., 83 (2013), 1443-1447.  doi: 10.1016/j.spl.2013.02.009.

[15]

N. Yaakoubi, Accélération Explicite des Diffusions par des Flots Incompressibles sur des Espaces Bidimensionnels, Ph.D thesis, University of Sfax in Tunisia, 2016.

[16]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure and Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63

[2]

Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119

[3]

Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264

[4]

Janusz Mierczyński, Wenxian Shen. The Faber--Krahn inequality for random/nonautonomous parabolic equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 101-114. doi: 10.3934/cpaa.2005.4.101

[5]

O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077

[6]

Thorsten Riess. Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking. Conference Publications, 2011, 2011 (Special) : 1244-1253. doi: 10.3934/proc.2011.2011.1244

[7]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure and Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[8]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[9]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control and Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

[10]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure and Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[11]

Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112

[12]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure and Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[13]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[14]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[15]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[16]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[17]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[18]

Marina Gonchenko, Sergey Gonchenko, Klim Safonov. Reversible perturbations of conservative Hénon-like maps. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1875-1895. doi: 10.3934/dcds.2020343

[19]

Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024

[20]

Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (250)
  • HTML views (113)
  • Cited by (0)

Other articles
by authors

[Back to Top]