July  2020, 40(7): 4093-4112. doi: 10.3934/dcds.2020173

Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift

1. 

Laboratoire d'Algèbre, Géométrie, Théorie Spectrale LR 11 ES 53, Faculté des Sciences de Sfax, Univerité de Sfax, 3.5 km, Route de la Soukra, B.P. 1171, Sfax 3000, Tunisia

2. 

Laboratoire de Mathématiques de Bretagne Atlantique, UMR CNRS 6205, Université de Brest, UFR Sciences et Techniques, 6 Avenue Le Gorgeu, 29200 Brest, France

3. 

ESPRIT - Ecole Supérieure Privée d'Ingénierie et de Technologies, Pôle Technologique El Ghazela, Ariana 2083, Tunisia

* Corresponding author: Brice Franke

Received  June 2018 Revised  February 2019 Published  April 2020

Fund Project: This research was supported by the french tunisian research grant PHC Utique CMCU16G1505

The principal aim of this paper is to construct an explicit sequence of weighted divergence free vector fields which accelerates the rate of convergence of planar Ornstein-Uhlenbeck diffusion to its equilibrium state. The rate of convergence is expressed in terms of the spectral gap of the diffusion generator. We construct an explicit sequence of vector fields which pushes the spectral gap to infinity. The acceleration of the diffusion results from the strong oscillation of the flow lines generated by the vector field.

Citation: Mondher Damak, Brice Franke, Nejib Yaakoubi. Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4093-4112. doi: 10.3934/dcds.2020173
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975.   Google Scholar
[2]

P. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0076330.  Google Scholar

[3] I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984.   Google Scholar
[4]

P. ConstantinA. KiselevL. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow, Ann. of Math. (2), 168 (2008), 643-674.  doi: 10.4007/annals.2008.168.643.  Google Scholar

[5]

B. Franke, Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift, Math. Z., 246 (2004), 373-403.  doi: 10.1007/s00209-003-0604-1.  Google Scholar

[6]

B. FrankeC.-R. HwangH.-M. Pai and S.-J. Sheu, The behavior of the spectral gap under growing drift, Trans. Amer. Math. Soc., 362 (2010), 1325-1350.  doi: 10.1090/S0002-9947-09-04939-3.  Google Scholar

[7]

B. Franke and N. Yaakoubi, On how to use drift to push the spectral gap of a diffusion on $S^{2}$ to infinity, Quart. Appl. Math., 74 (2016), 321-335.  doi: 10.1090/qam/1426.  Google Scholar

[8]

B. Franke and N. Yaakoubi, Accelerating diffusion on compact Riemannian surfaces by incompressible drift, Anal. Appl. (Singap.), 15 (2017), 653-666.  doi: 10.1142/S0219530516500184.  Google Scholar

[9]

S. Geman and C.-R. Hwang, Diffusion for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.  doi: 10.1137/0324060.  Google Scholar

[10]

P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, MA, 1982.  Google Scholar

[11]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating Gaussian diffusions, Ann. Appl. Probab., 3 (1993), 897-913.  doi: 10.1214/aoap/1177005371.  Google Scholar

[12]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating diffusions, Ann. Appl. Probab., 15 (2005), 1433-1444.  doi: 10.1214/105051605000000025.  Google Scholar

[13]

C.-R. HwangR. Normand and S.-J. Wu, Variance reduction for diffusions, Stochastic Process. Appl., 125 (2015), 3522-3540.  doi: 10.1016/j.spa.2015.03.006.  Google Scholar

[14]

C.-R. Hwang and H.-M. Pai, Accelerating Brownian motion on $N$-torus, Statist. Probab. Lett., 83 (2013), 1443-1447.  doi: 10.1016/j.spl.2013.02.009.  Google Scholar

[15]

N. Yaakoubi, Accélération Explicite des Diffusions par des Flots Incompressibles sur des Espaces Bidimensionnels, Ph.D thesis, University of Sfax in Tunisia, 2016. Google Scholar

[16]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, New York-London, 1975.   Google Scholar
[2]

P. Bérard, Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, 1207, Springer-Verlag, Berlin, 1986. doi: 10.1007/BFb0076330.  Google Scholar

[3] I. Chavel, Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984.   Google Scholar
[4]

P. ConstantinA. KiselevL. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow, Ann. of Math. (2), 168 (2008), 643-674.  doi: 10.4007/annals.2008.168.643.  Google Scholar

[5]

B. Franke, Integral inequalities for the fundamental solutions of diffusions on manifolds with divergence-free drift, Math. Z., 246 (2004), 373-403.  doi: 10.1007/s00209-003-0604-1.  Google Scholar

[6]

B. FrankeC.-R. HwangH.-M. Pai and S.-J. Sheu, The behavior of the spectral gap under growing drift, Trans. Amer. Math. Soc., 362 (2010), 1325-1350.  doi: 10.1090/S0002-9947-09-04939-3.  Google Scholar

[7]

B. Franke and N. Yaakoubi, On how to use drift to push the spectral gap of a diffusion on $S^{2}$ to infinity, Quart. Appl. Math., 74 (2016), 321-335.  doi: 10.1090/qam/1426.  Google Scholar

[8]

B. Franke and N. Yaakoubi, Accelerating diffusion on compact Riemannian surfaces by incompressible drift, Anal. Appl. (Singap.), 15 (2017), 653-666.  doi: 10.1142/S0219530516500184.  Google Scholar

[9]

S. Geman and C.-R. Hwang, Diffusion for global optimization, SIAM J. Control Optim., 24 (1986), 1031-1043.  doi: 10.1137/0324060.  Google Scholar

[10]

P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, MA, 1982.  Google Scholar

[11]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating Gaussian diffusions, Ann. Appl. Probab., 3 (1993), 897-913.  doi: 10.1214/aoap/1177005371.  Google Scholar

[12]

C.-R. HwangS.-Y. Hwang-Ma and S.-J. Sheu, Accelerating diffusions, Ann. Appl. Probab., 15 (2005), 1433-1444.  doi: 10.1214/105051605000000025.  Google Scholar

[13]

C.-R. HwangR. Normand and S.-J. Wu, Variance reduction for diffusions, Stochastic Process. Appl., 125 (2015), 3522-3540.  doi: 10.1016/j.spa.2015.03.006.  Google Scholar

[14]

C.-R. Hwang and H.-M. Pai, Accelerating Brownian motion on $N$-torus, Statist. Probab. Lett., 83 (2013), 1443-1447.  doi: 10.1016/j.spl.2013.02.009.  Google Scholar

[15]

N. Yaakoubi, Accélération Explicite des Diffusions par des Flots Incompressibles sur des Espaces Bidimensionnels, Ph.D thesis, University of Sfax in Tunisia, 2016. Google Scholar

[16]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure & Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63

[2]

Giovanni Cupini, Eugenio Vecchi. Faber-Krahn and Lieb-type inequalities for the composite membrane problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2679-2691. doi: 10.3934/cpaa.2019119

[3]

Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264

[4]

O. A. Veliev. On the spectrality and spectral expansion of the non-self-adjoint mathieu-hill operator in $ L_{2}(-\infty, \infty) $. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1537-1562. doi: 10.3934/cpaa.2020077

[5]

Janusz Mierczyński, Wenxian Shen. The Faber--Krahn inequality for random/nonautonomous parabolic equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 101-114. doi: 10.3934/cpaa.2005.4.101

[6]

Thorsten Riess. Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking. Conference Publications, 2011, 2011 (Special) : 1244-1253. doi: 10.3934/proc.2011.2011.1244

[7]

Wen Deng. Resolvent estimates for a two-dimensional non-self-adjoint operator. Communications on Pure & Applied Analysis, 2013, 12 (1) : 547-596. doi: 10.3934/cpaa.2013.12.547

[8]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[9]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[10]

Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112

[11]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[12]

Dachun Yang, Sibei Yang. Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2135-2160. doi: 10.3934/cpaa.2016031

[13]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[14]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[15]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[16]

Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47

[17]

Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks & Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024

[18]

Xijun Hu, Li Wu. Decomposition of spectral flow and Bott-type iteration formula. Electronic Research Archive, 2020, 28 (1) : 127-148. doi: 10.3934/era.2020008

[19]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[20]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (117)
  • HTML views (109)
  • Cited by (0)

Other articles
by authors

[Back to Top]