July  2020, 40(7): 4113-4130. doi: 10.3934/dcds.2020174

Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities

Department of Mathematical Sciences, NTNU – Norwegian University of Science and Technology, 7491 Trondheim, Norway

Received  February 2019 Revised  January 2020 Published  April 2020

Fund Project: The author acknowledges the support from grant no. 250070 from the Research Council of Norway

We prove existence of solitary-wave solutions to the equation
$ \begin{equation*} u_t+ (Lu - n(u))_x = 0\,, \end{equation*} $
for weak assumptions on the dispersion
$ L $
and the nonlinearity
$ n $
. The symbol
$ m $
of the Fourier multiplier
$ L $
is allowed to be of low positive order (
$ s > 0 $
), while
$ n $
need only be locally Lipschitz and asymptotically homogeneous at zero. We shall discover such solutions in Sobolev spaces contained in
$ H^{1+s} $
.
Citation: Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174
References:
[1]

J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, in Applied Analysis, Contemp. Math., 221, Amer. Math. Soc., Providence, RI, 1999, 1–29. doi: 10.1090/conm/221/03116.  Google Scholar

[2]

J. P. AlbertJ. L. Bona and J.-C. Saut, Model equations for waves in stratified fluids, Proc. Roy. Soc. London Ser. A, 453 (1997), 1233-1260.  doi: 10.1098/rspa.1997.0068.  Google Scholar

[3]

M. N. Arnesen, Existence of solitary-wave solutions to nonlocal equations, Discrete Contin. Dyn. Syst., 36 (2016), 3483-3510.  doi: 10.3934/dcds.2016.36.3483.  Google Scholar

[4]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.  Google Scholar

[5]

G. BourdaudM. Moussai and W. Sickel, Composition operators acting on Besov spaces on the real line, Ann. Mat. Pura Appl. (4), 193 (2014), 1519-1554.  doi: 10.1007/s10231-013-0342-x.  Google Scholar

[6]

H. Chen and J. L. Bona, Periodic traveling-wave solutions of nonlinear dispersive evolution equations, Discrete Contin. Dyn. Syst., 33 (2013), 4841-4873.  doi: 10.3934/dcds.2013.33.4841.  Google Scholar

[7]

M. EhrnströmM. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type, Nonlinearity, 25 (2012), 2903-2936.  doi: 10.1088/0951-7715/25/10/2903.  Google Scholar

[8]

M. EhrnströmM. A. JohnsonO. I. H. Maehlen and F. Remonato, On the bifurcation diagram of the capillary–gravity Whitham equation, Water Waves, 1 (2019), 275-313.  doi: 10.1007/s42286-019-00019-4.  Google Scholar

[9]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\Bbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[10]

M. D. Groves and E. Wahlén, On the existence and conditional energetic stability of solitary gravity-capillary surface waves on deep water, J. Math. Fluid Mech., 13 (2011), 593-627.  doi: 10.1007/s00021-010-0034-x.  Google Scholar

[11]

M. A. Johnson and J. D. Wright, Generalized solitary waves in the gravity-capillary Whitham equation, Studies in Applied Mathematics, 144 (2020), 102-130.  doi: 10.1111/sapm.12288.  Google Scholar

[12]

D. Lannes, The Water Waves Problem. Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/188.  Google Scholar

[13]

F. LinaresD. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations. I: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.  Google Scholar

[14]

F. LinaresD. Pilod and J.-C. Saut, Remarks on the orbital stability of ground state solutions of fKdV and related equations, Adv. Differential Equations, 20 (2015), 835-858.   Google Scholar

[15]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[16]

M. Moussai, Composition operators on Besov spaces in the limiting case $s=1+1/p$, Studia Math., 241 (2018), 1-15.  doi: 10.4064/sm8136-4-2017.  Google Scholar

[17]

S. M. Sun, Non-existence of truly solitary waves in water with small surface tension, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2191-2228.  doi: 10.1098/rspa.1999.0399.  Google Scholar

[18]

M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations, 12 (1987), 1133-1173.  doi: 10.1080/03605308708820522.  Google Scholar

[19]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type, J. Differential Equations, 188 (2003), 1-32.  doi: 10.1016/S0022-0396(02)00061-X.  Google Scholar

show all references

References:
[1]

J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, in Applied Analysis, Contemp. Math., 221, Amer. Math. Soc., Providence, RI, 1999, 1–29. doi: 10.1090/conm/221/03116.  Google Scholar

[2]

J. P. AlbertJ. L. Bona and J.-C. Saut, Model equations for waves in stratified fluids, Proc. Roy. Soc. London Ser. A, 453 (1997), 1233-1260.  doi: 10.1098/rspa.1997.0068.  Google Scholar

[3]

M. N. Arnesen, Existence of solitary-wave solutions to nonlocal equations, Discrete Contin. Dyn. Syst., 36 (2016), 3483-3510.  doi: 10.3934/dcds.2016.36.3483.  Google Scholar

[4]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York, 1976. doi: 10.1007/978-3-642-66451-9.  Google Scholar

[5]

G. BourdaudM. Moussai and W. Sickel, Composition operators acting on Besov spaces on the real line, Ann. Mat. Pura Appl. (4), 193 (2014), 1519-1554.  doi: 10.1007/s10231-013-0342-x.  Google Scholar

[6]

H. Chen and J. L. Bona, Periodic traveling-wave solutions of nonlinear dispersive evolution equations, Discrete Contin. Dyn. Syst., 33 (2013), 4841-4873.  doi: 10.3934/dcds.2013.33.4841.  Google Scholar

[7]

M. EhrnströmM. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type, Nonlinearity, 25 (2012), 2903-2936.  doi: 10.1088/0951-7715/25/10/2903.  Google Scholar

[8]

M. EhrnströmM. A. JohnsonO. I. H. Maehlen and F. Remonato, On the bifurcation diagram of the capillary–gravity Whitham equation, Water Waves, 1 (2019), 275-313.  doi: 10.1007/s42286-019-00019-4.  Google Scholar

[9]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\Bbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[10]

M. D. Groves and E. Wahlén, On the existence and conditional energetic stability of solitary gravity-capillary surface waves on deep water, J. Math. Fluid Mech., 13 (2011), 593-627.  doi: 10.1007/s00021-010-0034-x.  Google Scholar

[11]

M. A. Johnson and J. D. Wright, Generalized solitary waves in the gravity-capillary Whitham equation, Studies in Applied Mathematics, 144 (2020), 102-130.  doi: 10.1111/sapm.12288.  Google Scholar

[12]

D. Lannes, The Water Waves Problem. Mathematical Analysis and Asymptotics, Mathematical Surveys and Monographs, 188, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/188.  Google Scholar

[13]

F. LinaresD. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations. I: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.  Google Scholar

[14]

F. LinaresD. Pilod and J.-C. Saut, Remarks on the orbital stability of ground state solutions of fKdV and related equations, Adv. Differential Equations, 20 (2015), 835-858.   Google Scholar

[15]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[16]

M. Moussai, Composition operators on Besov spaces in the limiting case $s=1+1/p$, Studia Math., 241 (2018), 1-15.  doi: 10.4064/sm8136-4-2017.  Google Scholar

[17]

S. M. Sun, Non-existence of truly solitary waves in water with small surface tension, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455 (1999), 2191-2228.  doi: 10.1098/rspa.1999.0399.  Google Scholar

[18]

M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Equations, 12 (1987), 1133-1173.  doi: 10.1080/03605308708820522.  Google Scholar

[19]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type, J. Differential Equations, 188 (2003), 1-32.  doi: 10.1016/S0022-0396(02)00061-X.  Google Scholar

[1]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[2]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[3]

Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059

[4]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[5]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[6]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[7]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[8]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[9]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[10]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[11]

Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621

[12]

Shunlian Liu, David M. Ambrose. Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3123-3147. doi: 10.3934/dcds.2019129

[13]

Calin Iulian Martin, Adrián Rodríguez-Sanjurjo. Dispersion relations for steady periodic water waves of fixed mean-depth with two rotational layers. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5149-5169. doi: 10.3934/dcds.2019209

[14]

Delia Ionescu-Kruse, Anca-Voichita Matioc. Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3045-3060. doi: 10.3934/dcds.2014.34.3045

[15]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[16]

Sevdzhan Hakkaev. Orbital stability of solitary waves of the Schrödinger-Boussinesq equation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1043-1050. doi: 10.3934/cpaa.2007.6.1043

[17]

Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583

[18]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[19]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[20]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (121)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]