July  2020, 40(7): 4163-4177. doi: 10.3934/dcds.2020176

Synchronisation of almost all trajectories of a random dynamical system

Department of Mathematics, University of Exeter, Exeter, EX4 4QF, United Kingdom

Received  April 2019 Revised  December 2019 Published  April 2020

Fund Project: The author wishes gratefully to acknowledge funding from an EPSRC Doctoral Training Account and an EPSRC Doctoral Prize, both at Imperial College London

It has been shown by Le Jan that, given a memoryless-noise random dynamical system together with an ergodic distribution for the associated Markov transition probabilities, if the support of the ergodic distribution admits locally asymptotically stable trajectories, then there is a random attracting set consisting of finitely many points, whose basin of forward-time attraction includes a random full measure open set. In this paper, we present necessary and sufficient conditions for this attracting set to be a singleton. Our result does not require the state space to be compact, but holds on general Lusin metric spaces (in both discrete and continuous time).

Citation: Julian Newman. Synchronisation of almost all trajectories of a random dynamical system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4163-4177. doi: 10.3934/dcds.2020176
References:
[1]

V. A. Antonov, Modeling of processes of cyclic evolution type. Synchronization by a random signal, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 1984, 67–76.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

P. H. Baxendale, Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms, in Spatial Stochastic Processes, Progr. Probab., 19, Birkhäuser Boston, Boston, MA, 1991,189–218. doi: 10.1007/978-1-4612-0451-0_9.  Google Scholar

[4]

P. BertiL. Pratelli and P. Rigo, Almost sure weak convergence of random probability measures, Stochastics, 78 (2006), 91-97.  doi: 10.1080/17442500600745359.  Google Scholar

[5]

M. CranstonB. Gess and M. Scheutzow, Weak synchronization for isotropic flows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3003-3014.  doi: 10.3934/dcdsb.2016084.  Google Scholar

[6]

H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11, Taylor & Francis, London, 2002.  Google Scholar

[7]

H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10 (1998), 259-274.  doi: 10.1023/A:1022665916629.  Google Scholar

[8]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.  doi: 10.1007/s00440-016-0716-2.  Google Scholar

[9]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise for order-preserving random dynamical systems, Ann. Probab., 45 (2017), 1325-1350.  doi: 10.1214/16-AOP1088.  Google Scholar

[10]

D. H. Fremlin, Measure Theory. 4: Topological Measure Spaces, Torres Fremlin, Colchester, 2006.  Google Scholar

[11]

A. J. Homburg, Synchronization in iterated function systems, preprint, arXiv: 1303.6054v1. Google Scholar

[12]

T. Kaijser, On stochastic perturbations of iterations of circle maps, Phys. D, 68 (1993), 201-231.  doi: 10.1016/0167-2789(93)90081-B.  Google Scholar

[13]

Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10, Birkhäuser Boston, Inc., Boston, MA, 1986. doi: 10.1007/978-1-4684-9175-3.  Google Scholar

[14] S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, 194, Cambridge University Press, Cambridge, 2012.  doi: 10.1017/CBO9781139137119.  Google Scholar
[15]

Y. Le Jan, \'{E}quilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 111-120.   Google Scholar

[16]

D. Malicet, Random walks on Homeo(S1), Commun. Math. Phys., 356 (2017), 1083-1116.  doi: 10.1007/s00220-017-2996-5.  Google Scholar

[17]

J. Newman, Ergodic theory for semigroups of Markov kernels, 2015. Available from: http://wwwf.imperial.ac.uk/ jmn07/Ergodic_Theory_for_Semigroups_of_Markov_Kernels.pdf. Google Scholar

[18]

J. Newman, Synchronisation in invertible random dynamical systems on the circle, preprint, arXiv: 1502.07618v2. Google Scholar

[19]

J. Newman, Necessary and sufficient conditions for stable synchronization in random dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1857-1875.  doi: 10.1017/etds.2016.109.  Google Scholar

[20]

A. S. Pikovskii, Synchronization and stochastization of array of self-excited oscillators by external noise, Radiophys. Quantum Electron., 27 (1984), 390-395.  doi: 10.1007/BF01044784.  Google Scholar

[21]

S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, 180, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-642-85473-6.  Google Scholar

[22]

R. ToralC. R. MirassoE. Hernández-García and O. Piro, Analytical and numerical studies of noise-induced synchronization of chaotic systems, Chaos, 11 (2001), 665-673.  doi: 10.1063/1.1386397.  Google Scholar

show all references

References:
[1]

V. A. Antonov, Modeling of processes of cyclic evolution type. Synchronization by a random signal, Vestnik Leningrad. Univ. Mat. Mekh. Astronom., 1984, 67–76.  Google Scholar

[2]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[3]

P. H. Baxendale, Statistical equilibrium and two-point motion for a stochastic flow of diffeomorphisms, in Spatial Stochastic Processes, Progr. Probab., 19, Birkhäuser Boston, Boston, MA, 1991,189–218. doi: 10.1007/978-1-4612-0451-0_9.  Google Scholar

[4]

P. BertiL. Pratelli and P. Rigo, Almost sure weak convergence of random probability measures, Stochastics, 78 (2006), 91-97.  doi: 10.1080/17442500600745359.  Google Scholar

[5]

M. CranstonB. Gess and M. Scheutzow, Weak synchronization for isotropic flows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3003-3014.  doi: 10.3934/dcdsb.2016084.  Google Scholar

[6]

H. Crauel, Random Probability Measures on Polish Spaces, Stochastics Monographs, 11, Taylor & Francis, London, 2002.  Google Scholar

[7]

H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10 (1998), 259-274.  doi: 10.1023/A:1022665916629.  Google Scholar

[8]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise, Probab. Theory Related Fields, 168 (2017), 511-556.  doi: 10.1007/s00440-016-0716-2.  Google Scholar

[9]

F. FlandoliB. Gess and M. Scheutzow, Synchronization by noise for order-preserving random dynamical systems, Ann. Probab., 45 (2017), 1325-1350.  doi: 10.1214/16-AOP1088.  Google Scholar

[10]

D. H. Fremlin, Measure Theory. 4: Topological Measure Spaces, Torres Fremlin, Colchester, 2006.  Google Scholar

[11]

A. J. Homburg, Synchronization in iterated function systems, preprint, arXiv: 1303.6054v1. Google Scholar

[12]

T. Kaijser, On stochastic perturbations of iterations of circle maps, Phys. D, 68 (1993), 201-231.  doi: 10.1016/0167-2789(93)90081-B.  Google Scholar

[13]

Y. Kifer, Ergodic Theory of Random Transformations, Progress in Probability and Statistics, 10, Birkhäuser Boston, Inc., Boston, MA, 1986. doi: 10.1007/978-1-4684-9175-3.  Google Scholar

[14] S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge Tracts in Mathematics, 194, Cambridge University Press, Cambridge, 2012.  doi: 10.1017/CBO9781139137119.  Google Scholar
[15]

Y. Le Jan, \'{E}quilibre statistique pour les produits de difféomorphismes aléatoires indépendants, Ann. Inst. H. Poincaré Probab. Statist., 23 (1987), 111-120.   Google Scholar

[16]

D. Malicet, Random walks on Homeo(S1), Commun. Math. Phys., 356 (2017), 1083-1116.  doi: 10.1007/s00220-017-2996-5.  Google Scholar

[17]

J. Newman, Ergodic theory for semigroups of Markov kernels, 2015. Available from: http://wwwf.imperial.ac.uk/ jmn07/Ergodic_Theory_for_Semigroups_of_Markov_Kernels.pdf. Google Scholar

[18]

J. Newman, Synchronisation in invertible random dynamical systems on the circle, preprint, arXiv: 1502.07618v2. Google Scholar

[19]

J. Newman, Necessary and sufficient conditions for stable synchronization in random dynamical systems, Ergodic Theory Dynam. Systems, 38 (2018), 1857-1875.  doi: 10.1017/etds.2016.109.  Google Scholar

[20]

A. S. Pikovskii, Synchronization and stochastization of array of self-excited oscillators by external noise, Radiophys. Quantum Electron., 27 (1984), 390-395.  doi: 10.1007/BF01044784.  Google Scholar

[21]

S. M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, 180, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-642-85473-6.  Google Scholar

[22]

R. ToralC. R. MirassoE. Hernández-García and O. Piro, Analytical and numerical studies of noise-induced synchronization of chaotic systems, Chaos, 11 (2001), 665-673.  doi: 10.1063/1.1386397.  Google Scholar

[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[3]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[4]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[5]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[6]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[9]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[12]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[13]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[14]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[15]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[16]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[17]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[18]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[19]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[20]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (156)
  • HTML views (123)
  • Cited by (0)

Other articles
by authors

[Back to Top]