
-
Previous Article
Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations
- DCDS Home
- This Issue
-
Next Article
Synchronisation of almost all trajectories of a random dynamical system
A new type of non-landing exponential rays
1. | Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China |
2. | Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China |
In this paper, we will construct a new type of non-landing exponential rays, each of whose accumulation sets is bounded, disjoint from the ray and homeomorphic to the closed topologist's sine curve.
References:
[1] |
C. Bodelón, R. L. Devaney, L. Goldberg, M. Hayes, J. Hubbard and G. Roberts,
Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1517-1534.
doi: 10.1142/S0218127499001061. |
[2] |
R. L. Devaney, Complex exponential dynamics, in Handbook of Dynamical Systems, Elsevier, North-Holland, 2010.
doi: 10.1016/S1874-575X(10)00312-7. |
[3] |
R. L. Devaney,
Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems, 13 (1993), 627-634.
doi: 10.1017/S0143385700007586. |
[4] |
R. L. Devaney and X. Jarque,
Indecomposable continua in exponential dynamics, Conform. Geom. Dyn., 6 (2002), 1-12.
doi: 10.1090/S1088-4173-02-00080-2. |
[5] |
R. L. Devaney, X. Jarque and M. M. Rocha,
Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3281-3293.
doi: 10.1142/S0218127405013885. |
[6] |
J. Fu and G. Zhang,
On the accumulation sets of exponential rays, Ergodic Theory Dynam. Systems, 39 (2019), 370-391.
doi: 10.1017/etds.2017.33. |
[7] |
J. Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, NJ, 2006. |
[8] |
J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[9] |
S. B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992. |
[10] |
M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961.
![]() ![]() |
[11] |
L. Rempe,
A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006), 2639-2648.
doi: 10.1090/S0002-9939-06-08287-6. |
[12] |
L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, preprint, arXiv: 1610.06278v3. |
[13] |
L. Rempe, Dynamics of Exponential Maps, Ph.D thesis, Christian-Albrechts-Universität Kiel, 2003. |
[14] |
L. Rempe,
On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 32 (2007), 353-369.
|
[15] |
G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher,
Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011), 77-125.
doi: 10.4007/annals.2011.173.1.3. |
[16] |
D. Schleicher and J. Zimmer,
Escaping points of exponential maps, J. London. Math. Soc. (2), 67 (2003), 380-400.
doi: 10.1112/S0024610702003897. |
[17] |
D. Schleicher and J. Zimmer,
Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003), 327-354.
|
show all references
References:
[1] |
C. Bodelón, R. L. Devaney, L. Goldberg, M. Hayes, J. Hubbard and G. Roberts,
Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1517-1534.
doi: 10.1142/S0218127499001061. |
[2] |
R. L. Devaney, Complex exponential dynamics, in Handbook of Dynamical Systems, Elsevier, North-Holland, 2010.
doi: 10.1016/S1874-575X(10)00312-7. |
[3] |
R. L. Devaney,
Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems, 13 (1993), 627-634.
doi: 10.1017/S0143385700007586. |
[4] |
R. L. Devaney and X. Jarque,
Indecomposable continua in exponential dynamics, Conform. Geom. Dyn., 6 (2002), 1-12.
doi: 10.1090/S1088-4173-02-00080-2. |
[5] |
R. L. Devaney, X. Jarque and M. M. Rocha,
Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3281-3293.
doi: 10.1142/S0218127405013885. |
[6] |
J. Fu and G. Zhang,
On the accumulation sets of exponential rays, Ergodic Theory Dynam. Systems, 39 (2019), 370-391.
doi: 10.1017/etds.2017.33. |
[7] |
J. Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, NJ, 2006. |
[8] |
J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000. |
[9] |
S. B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992. |
[10] |
M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961.
![]() ![]() |
[11] |
L. Rempe,
A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006), 2639-2648.
doi: 10.1090/S0002-9939-06-08287-6. |
[12] |
L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, preprint, arXiv: 1610.06278v3. |
[13] |
L. Rempe, Dynamics of Exponential Maps, Ph.D thesis, Christian-Albrechts-Universität Kiel, 2003. |
[14] |
L. Rempe,
On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 32 (2007), 353-369.
|
[15] |
G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher,
Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011), 77-125.
doi: 10.4007/annals.2011.173.1.3. |
[16] |
D. Schleicher and J. Zimmer,
Escaping points of exponential maps, J. London. Math. Soc. (2), 67 (2003), 380-400.
doi: 10.1112/S0024610702003897. |
[17] |
D. Schleicher and J. Zimmer,
Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003), 327-354.
|


[1] |
James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 |
[2] |
Marie-Claude Arnaud. A nondifferentiable essential irrational invariant curve for a $C^1$ symplectic twist map. Journal of Modern Dynamics, 2011, 5 (3) : 583-591. doi: 10.3934/jmd.2011.5.583 |
[3] |
Xu Xu, Xin Zhao. Exponential upper bounds on the spectral gaps and homogeneous spectrum for the non-critical extended Harper's model. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4777-4800. doi: 10.3934/dcds.2020201 |
[4] |
Marc Deschamps, Olivier Poncelet. Complex ray in anisotropic solids: Extended Fermat's principle. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1623-1633. doi: 10.3934/dcdss.2019110 |
[5] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
[6] |
Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455 |
[7] |
Michela Eleuteri, Jana Kopfov, Pavel Krej?. Fatigue accumulation in an oscillating plate. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 909-923. doi: 10.3934/dcdss.2013.6.909 |
[8] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[9] |
Héctor A. Tabares-Ospina, Mauricio Osorio. Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1895-1905. doi: 10.3934/dcdsb.2020008 |
[10] |
Yangrong Li, Shuang Yang. Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1155-1175. doi: 10.3934/cpaa.2019056 |
[11] |
V. V. Chepyzhov, M. I. Vishik, W. L. Wendland. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 27-38. doi: 10.3934/dcds.2005.12.27 |
[12] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations and Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[13] |
Fernando Lenarduzzi. Recoding the classical Hénon-Devaney map. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4073-4092. doi: 10.3934/dcds.2020172 |
[14] |
James Benn. Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group. Journal of Geometric Mechanics, 2016, 8 (1) : 1-12. doi: 10.3934/jgm.2016.8.1 |
[15] |
Gabriel Soler López. Accumulation points of flows on the Klein bottle. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 497-503. doi: 10.3934/dcds.2003.9.497 |
[16] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial and Management Optimization, 2022, 18 (2) : 825-841. doi: 10.3934/jimo.2020180 |
[17] |
Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173 |
[18] |
Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1 |
[19] |
Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031 |
[20] |
Michela Eleuteri, Jana Kopfová, Pavel Krejčí. Fatigue accumulation in a thermo-visco-elastoplastic plate. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2091-2109. doi: 10.3934/dcdsb.2014.19.2091 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]