In this paper, we will construct a new type of non-landing exponential rays, each of whose accumulation sets is bounded, disjoint from the ray and homeomorphic to the closed topologist's sine curve.
Citation: |
[1] |
C. Bodelón, R. L. Devaney, L. Goldberg, M. Hayes, J. Hubbard and G. Roberts, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1517-1534.
doi: 10.1142/S0218127499001061.![]() ![]() ![]() |
[2] |
R. L. Devaney, Complex exponential dynamics, in Handbook of Dynamical Systems, Elsevier, North-Holland, 2010.
doi: 10.1016/S1874-575X(10)00312-7.![]() ![]() |
[3] |
R. L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems, 13 (1993), 627-634.
doi: 10.1017/S0143385700007586.![]() ![]() ![]() |
[4] |
R. L. Devaney and X. Jarque, Indecomposable continua in exponential dynamics, Conform. Geom. Dyn., 6 (2002), 1-12.
doi: 10.1090/S1088-4173-02-00080-2.![]() ![]() ![]() |
[5] |
R. L. Devaney, X. Jarque and M. M. Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3281-3293.
doi: 10.1142/S0218127405013885.![]() ![]() ![]() |
[6] |
J. Fu and G. Zhang, On the accumulation sets of exponential rays, Ergodic Theory Dynam. Systems, 39 (2019), 370-391.
doi: 10.1017/etds.2017.33.![]() ![]() ![]() |
[7] |
J. Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, NJ, 2006.
![]() ![]() |
[8] |
J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
![]() ![]() |
[9] |
S. B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.
![]() ![]() |
[10] |
M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961.
![]() ![]() |
[11] |
L. Rempe, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006), 2639-2648.
doi: 10.1090/S0002-9939-06-08287-6.![]() ![]() ![]() |
[12] |
L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, preprint, arXiv: 1610.06278v3.
![]() |
[13] |
L. Rempe, Dynamics of Exponential Maps, Ph.D thesis, Christian-Albrechts-Universität Kiel, 2003.
![]() |
[14] |
L. Rempe, On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 32 (2007), 353-369.
![]() ![]() |
[15] |
G. Rottenfusser, J. Rückert, L. Rempe and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011), 77-125.
doi: 10.4007/annals.2011.173.1.3.![]() ![]() ![]() |
[16] |
D. Schleicher and J. Zimmer, Escaping points of exponential maps, J. London. Math. Soc. (2), 67 (2003), 380-400.
doi: 10.1112/S0024610702003897.![]() ![]() ![]() |
[17] |
D. Schleicher and J. Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003), 327-354.
![]() ![]() |
The folding process of
Here is the sketch of