July  2020, 40(7): 4179-4196. doi: 10.3934/dcds.2020177

A new type of non-landing exponential rays

1. 

Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Song Zhang

Received  April 2019 Revised  January 2020 Published  April 2020

Fund Project: This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019kfyXJJS135) and the National Natural Science Foundation of China (Grant No. 11901219)

In this paper, we will construct a new type of non-landing exponential rays, each of whose accumulation sets is bounded, disjoint from the ray and homeomorphic to the closed topologist's sine curve.

Citation: Jianxun Fu, Song Zhang. A new type of non-landing exponential rays. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4179-4196. doi: 10.3934/dcds.2020177
References:
[1]

C. BodelónR. L. DevaneyL. GoldbergM. HayesJ. Hubbard and G. Roberts, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1517-1534.  doi: 10.1142/S0218127499001061.  Google Scholar

[2]

R. L. Devaney, Complex exponential dynamics, in Handbook of Dynamical Systems, Elsevier, North-Holland, 2010. doi: 10.1016/S1874-575X(10)00312-7.  Google Scholar

[3]

R. L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems, 13 (1993), 627-634.  doi: 10.1017/S0143385700007586.  Google Scholar

[4]

R. L. Devaney and X. Jarque, Indecomposable continua in exponential dynamics, Conform. Geom. Dyn., 6 (2002), 1-12.  doi: 10.1090/S1088-4173-02-00080-2.  Google Scholar

[5]

R. L. DevaneyX. Jarque and M. M. Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3281-3293.  doi: 10.1142/S0218127405013885.  Google Scholar

[6]

J. Fu and G. Zhang, On the accumulation sets of exponential rays, Ergodic Theory Dynam. Systems, 39 (2019), 370-391.  doi: 10.1017/etds.2017.33.  Google Scholar

[7]

J. Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, NJ, 2006.  Google Scholar

[8]

J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.  Google Scholar

[9]

S. B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.  Google Scholar

[10] M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961.   Google Scholar
[11]

L. Rempe, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006), 2639-2648.  doi: 10.1090/S0002-9939-06-08287-6.  Google Scholar

[12]

L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, preprint, arXiv: 1610.06278v3. Google Scholar

[13]

L. Rempe, Dynamics of Exponential Maps, Ph.D thesis, Christian-Albrechts-Universität Kiel, 2003. Google Scholar

[14]

L. Rempe, On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 32 (2007), 353-369.   Google Scholar

[15]

G. RottenfusserJ. RückertL. Rempe and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011), 77-125.  doi: 10.4007/annals.2011.173.1.3.  Google Scholar

[16]

D. Schleicher and J. Zimmer, Escaping points of exponential maps, J. London. Math. Soc. (2), 67 (2003), 380-400.  doi: 10.1112/S0024610702003897.  Google Scholar

[17]

D. Schleicher and J. Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003), 327-354.   Google Scholar

show all references

References:
[1]

C. BodelónR. L. DevaneyL. GoldbergM. HayesJ. Hubbard and G. Roberts, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1517-1534.  doi: 10.1142/S0218127499001061.  Google Scholar

[2]

R. L. Devaney, Complex exponential dynamics, in Handbook of Dynamical Systems, Elsevier, North-Holland, 2010. doi: 10.1016/S1874-575X(10)00312-7.  Google Scholar

[3]

R. L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems, 13 (1993), 627-634.  doi: 10.1017/S0143385700007586.  Google Scholar

[4]

R. L. Devaney and X. Jarque, Indecomposable continua in exponential dynamics, Conform. Geom. Dyn., 6 (2002), 1-12.  doi: 10.1090/S1088-4173-02-00080-2.  Google Scholar

[5]

R. L. DevaneyX. Jarque and M. M. Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3281-3293.  doi: 10.1142/S0218127405013885.  Google Scholar

[6]

J. Fu and G. Zhang, On the accumulation sets of exponential rays, Ergodic Theory Dynam. Systems, 39 (2019), 370-391.  doi: 10.1017/etds.2017.33.  Google Scholar

[7]

J. Milnor, Dynamics in One Complex Variable, Annals of Mathematics Studies, 160, Princeton University Press, Princeton, NJ, 2006.  Google Scholar

[8]

J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.  Google Scholar

[9]

S. B. Nadler Jr., Continuum Theory. An Introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992.  Google Scholar

[10] M. H. A. Newman, Elements of the Topology of Plane Sets of Points, Cambridge University Press, New York, 1961.   Google Scholar
[11]

L. Rempe, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc., 134 (2006), 2639-2648.  doi: 10.1090/S0002-9939-06-08287-6.  Google Scholar

[12]

L. Rempe, Arc-like continua, Julia sets of entire functions, and Eremenko's conjecture, preprint, arXiv: 1610.06278v3. Google Scholar

[13]

L. Rempe, Dynamics of Exponential Maps, Ph.D thesis, Christian-Albrechts-Universität Kiel, 2003. Google Scholar

[14]

L. Rempe, On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 32 (2007), 353-369.   Google Scholar

[15]

G. RottenfusserJ. RückertL. Rempe and D. Schleicher, Dynamic rays of bounded-type entire functions, Ann. of Math. (2), 173 (2011), 77-125.  doi: 10.4007/annals.2011.173.1.3.  Google Scholar

[16]

D. Schleicher and J. Zimmer, Escaping points of exponential maps, J. London. Math. Soc. (2), 67 (2003), 380-400.  doi: 10.1112/S0024610702003897.  Google Scholar

[17]

D. Schleicher and J. Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math., 28 (2003), 327-354.   Google Scholar

Figure 1.  The folding process of $ \gamma_{6}^0 $ by $ g_{1}^- \circ g_{2}^+ \circ \cdots\circ g_{5}^-\circ g_{6}^+ $ for the above choice of $ \xi_i $ with $ i = 0,1,\cdots,5 $
Figure 2.  Here is the sketch of $ \gamma_0^{-12} $. The black polylines with different-sized bold show the idea of how the limit curve $ \eta $ is produced in the accumulation set of $ \gamma_0 $
[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[13]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[14]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (84)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]