-
Previous Article
Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation
- DCDS Home
- This Issue
-
Next Article
A new type of non-landing exponential rays
Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations
1. | Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria |
2. | RICAM Institute, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria |
The approximation of the value function associated to a stabilization problem formulated as optimal control problem for the Navier-Stokes equations in dimension three by means of solutions to generalized Lyapunov equations is proposed and analyzed. The specificity, that the value function is not differentiable on the state space must be overcome. For this purpose a new class of generalized Lyapunov equations is introduced. Existence of unique solutions to these equations is demonstrated. They provide the basis for feedback operators, which approximate the value function, the optimal states and controls, up to arbitrary order.
References:
[1] |
C. O. Aguilar and A. J. Krener,
Numerical solutions to the Bellman equation of optimal control, J. Optim. Theory Appl., 160 (2014), 527-552.
doi: 10.1007/s10957-013-0403-8. |
[2] |
E. Al'brekht,
On the optimal stabilization of nonlinear systems, J. Appl. Math. Mech., 25 (1961), 1254-1266.
doi: 10.1016/0021-8928(61)90005-3. |
[3] |
M. Badra,
Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Contin. Dyn. Syst., 32 (2012), 1169-1208.
doi: 10.3934/dcds.2012.32.1169. |
[4] |
M. Badra and T. Takahashi,
Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.
doi: 10.1137/090778146. |
[5] |
V. Barbu, Stabilization of Navier-Stokes Flows, Communications and Control Engineering Series, Springer, London, 2011.
doi: 10.1007/978-0-85729-043-4. |
[6] |
V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier–Stokes equations, Mem. Amer. Math. Soc., 181 (2006).
doi: 10.1090/memo/0852. |
[7] |
V. Barbu, S. Rodrigues and A. Shirikyan,
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.
doi: 10.1137/100785739. |
[8] |
V. Barbu and R. Triggiani,
Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.
doi: 10.1512/iumj.2004.53.2445. |
[9] |
S. Beeler, H. Tran and H. Banks,
Feedback control methodologies for nonlinear systems, J. Optim. Theory Appl., 107 (2000), 1-33.
doi: 10.1023/A:1004607114958. |
[10] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4581-6. |
[11] |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5975-0. |
[12] |
T. Breiten, K. Kunisch and L. Pfeiffer,
Infinite-horizon bilinear optimal control problems: Sensitivity analysis and polynomial feedback laws, SIAM J. Control Optim., 56 (2018), 3184-3214.
doi: 10.1137/18M1173952. |
[13] |
T. Breiten, K. Kunisch and L. Pfeiffer, Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation, preprint, arXiv: 1902.00394. Google Scholar |
[14] |
T. Breiten and L. Pfeiffer,
Taylor expansions of the value function associated with a bilinear optimal control problem, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 36 (2019), 1361-1399.
doi: 10.1016/j.anihpc.2019.01.001. |
[15] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[16] |
E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel,
Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.
doi: 10.1016/j.matpur.2004.02.010. |
[17] |
A. V. Fursikov,
Stabilizability of two-dimensional Navier–Stokes equations with help of a boundary feedback control, J. Math. Fluid Mech., 3 (2001), 259-301.
doi: 10.1007/PL00000972. |
[18] |
A. V. Fursikov,
Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 289-314.
doi: 10.3934/dcds.2004.10.289. |
[19] |
O. Y. Imanuvilov,
Remarks on exact controllability for the Navier-Stokes equations, ESAIM. Control Optim. Calc. Var., 6 (2001), 39-72.
doi: 10.1051/cocv:2001103. |
[20] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000. |
[21] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I/II, Grundlehren der mathematischen Wissenschaften, 181, Springer-Verlag, Berlin, 1972.
doi: 10.1007/978-3-642-65161-8. |
[22] |
D. L. Lukes,
Optimal regulation of nonlinear dynamical systems, SIAM J. Control, 7 (1969), 75-100.
doi: 10.1137/0307007. |
[23] |
C. Navasca and A. Krener, Patchy solutions of Hamilton-Jacobi-Bellman Partial differential equations, in Modeling, Estimation and Control, Lect. Notes Control Inf. Sci., 364, Springer, Berlin, 2007,251–270.
doi: 10.1007/978-3-540-73570-0_20. |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[25] |
M. Pošta and T. Roubíček,
Optimal control of Navier-Stokes equations by Oseen approximation, Comput. Math. Appl., 53 (2007), 569-581.
doi: 10.1016/j.camwa.2006.02.034. |
[26] |
J.-P. Raymond,
Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.
doi: 10.1137/050628726. |
[27] |
J.-P. Raymond,
Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl. (9), 87 (2007), 627-669.
doi: 10.1016/j.matpur.2007.04.002. |
[28] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[29] |
L. Thevenet, J.-M. Buchot and J.-P. Raymond,
Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM Control Optim. Calc. Var., 16 (2010), 929-955.
doi: 10.1051/cocv/2009028. |
[30] |
F. Tröltzsch and D. Wachsmuth,
Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 12 (2006), 93-119.
doi: 10.1051/cocv:2005029. |
[31] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. |
show all references
References:
[1] |
C. O. Aguilar and A. J. Krener,
Numerical solutions to the Bellman equation of optimal control, J. Optim. Theory Appl., 160 (2014), 527-552.
doi: 10.1007/s10957-013-0403-8. |
[2] |
E. Al'brekht,
On the optimal stabilization of nonlinear systems, J. Appl. Math. Mech., 25 (1961), 1254-1266.
doi: 10.1016/0021-8928(61)90005-3. |
[3] |
M. Badra,
Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control, Discrete Contin. Dyn. Syst., 32 (2012), 1169-1208.
doi: 10.3934/dcds.2012.32.1169. |
[4] |
M. Badra and T. Takahashi,
Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.
doi: 10.1137/090778146. |
[5] |
V. Barbu, Stabilization of Navier-Stokes Flows, Communications and Control Engineering Series, Springer, London, 2011.
doi: 10.1007/978-0-85729-043-4. |
[6] |
V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier–Stokes equations, Mem. Amer. Math. Soc., 181 (2006).
doi: 10.1090/memo/0852. |
[7] |
V. Barbu, S. Rodrigues and A. Shirikyan,
Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim., 49 (2011), 1454-1478.
doi: 10.1137/100785739. |
[8] |
V. Barbu and R. Triggiani,
Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.
doi: 10.1512/iumj.2004.53.2445. |
[9] |
S. Beeler, H. Tran and H. Banks,
Feedback control methodologies for nonlinear systems, J. Optim. Theory Appl., 107 (2000), 1-33.
doi: 10.1023/A:1004607114958. |
[10] |
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2007.
doi: 10.1007/978-0-8176-4581-6. |
[11] |
F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5975-0. |
[12] |
T. Breiten, K. Kunisch and L. Pfeiffer,
Infinite-horizon bilinear optimal control problems: Sensitivity analysis and polynomial feedback laws, SIAM J. Control Optim., 56 (2018), 3184-3214.
doi: 10.1137/18M1173952. |
[13] |
T. Breiten, K. Kunisch and L. Pfeiffer, Feedback stabilization of the two-dimensional Navier-Stokes equations by value function approximation, preprint, arXiv: 1902.00394. Google Scholar |
[14] |
T. Breiten and L. Pfeiffer,
Taylor expansions of the value function associated with a bilinear optimal control problem, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 36 (2019), 1361-1399.
doi: 10.1016/j.anihpc.2019.01.001. |
[15] |
R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Texts in Applied Mathematics, 21, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4224-6. |
[16] |
E. Fernández-Cara, S. Guerrero, O. Y. Imanuvilov and J.-P. Puel,
Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), 83 (2004), 1501-1542.
doi: 10.1016/j.matpur.2004.02.010. |
[17] |
A. V. Fursikov,
Stabilizability of two-dimensional Navier–Stokes equations with help of a boundary feedback control, J. Math. Fluid Mech., 3 (2001), 259-301.
doi: 10.1007/PL00000972. |
[18] |
A. V. Fursikov,
Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 289-314.
doi: 10.3934/dcds.2004.10.289. |
[19] |
O. Y. Imanuvilov,
Remarks on exact controllability for the Navier-Stokes equations, ESAIM. Control Optim. Calc. Var., 6 (2001), 39-72.
doi: 10.1051/cocv:2001103. |
[20] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000. |
[21] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I/II, Grundlehren der mathematischen Wissenschaften, 181, Springer-Verlag, Berlin, 1972.
doi: 10.1007/978-3-642-65161-8. |
[22] |
D. L. Lukes,
Optimal regulation of nonlinear dynamical systems, SIAM J. Control, 7 (1969), 75-100.
doi: 10.1137/0307007. |
[23] |
C. Navasca and A. Krener, Patchy solutions of Hamilton-Jacobi-Bellman Partial differential equations, in Modeling, Estimation and Control, Lect. Notes Control Inf. Sci., 364, Springer, Berlin, 2007,251–270.
doi: 10.1007/978-3-540-73570-0_20. |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[25] |
M. Pošta and T. Roubíček,
Optimal control of Navier-Stokes equations by Oseen approximation, Comput. Math. Appl., 53 (2007), 569-581.
doi: 10.1016/j.camwa.2006.02.034. |
[26] |
J.-P. Raymond,
Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.
doi: 10.1137/050628726. |
[27] |
J.-P. Raymond,
Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl. (9), 87 (2007), 627-669.
doi: 10.1016/j.matpur.2007.04.002. |
[28] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[29] |
L. Thevenet, J.-M. Buchot and J.-P. Raymond,
Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM Control Optim. Calc. Var., 16 (2010), 929-955.
doi: 10.1051/cocv/2009028. |
[30] |
F. Tröltzsch and D. Wachsmuth,
Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 12 (2006), 93-119.
doi: 10.1051/cocv:2005029. |
[31] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986. |
[1] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[2] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[3] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[4] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[5] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[6] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[7] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[8] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[9] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[10] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[11] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[12] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021005 |
[13] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[14] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[15] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[16] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[17] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[18] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[19] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[20] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021006 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]