July  2020, 40(7): 4287-4305. doi: 10.3934/dcds.2020181

On weak-strong uniqueness and singular limit for the compressible Primitive Equations

1. 

Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China

2. 

Key Laboratory of Ministry of Education for Virtual Geographic Environment, Jiangsu Center for Collaborative Innovation in Geographical, Information Resource Development and Application, Nanjing Normal University, Nanjing 210023, China

3. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, 11567, Praha 1, Czech Republic

4. 

Department of Mathematics, College of Sciences, Hohai University, Nanjing 210098, China

* Corresponding author

Received  June 2019 Revised  January 2020 Published  April 2020

Fund Project: The research of H. G is partially supported by the NSFC Grant No. 11531006. The research of Š.N. leading to these results has received funding from the Czech Sciences Foundation (GAČR), GA19-04243S and RVO 67985840. The research of T.T. is supported by the NSFC Grant No. 11801138

The paper addresses the weak-strong uniqueness property and singular limit for the compressible Primitive Equations (PE). We show that a weak solution coincides with the strong solution emanating from the same initial data. On the other hand, we prove compressible PE will approach to the incompressible inviscid PE equations in the regime of low Mach number and large Reynolds number in the case of well-prepared initial data. To the best of the authors' knowledge, this is the first work to bridge the link between the compressible PE with incompressible inviscid PE.

Citation: Hongjun Gao, Šárka Nečasová, Tong Tang. On weak-strong uniqueness and singular limit for the compressible Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4287-4305. doi: 10.3934/dcds.2020181
References:
[1]

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.  doi: 10.1088/0951-7715/12/3/004.  Google Scholar

[2]

Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595.  doi: 10.1016/S0007-4497(03)00024-1.  Google Scholar

[3]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368.  doi: 10.1016/j.matpur.2006.06.005.  Google Scholar

[4]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[5]

D. BreschF. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations, 16 (2003), 77-94.   Google Scholar

[6]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.  Google Scholar

[7]

D. BreschA. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36 (2004/05), 796-814.  doi: 10.1137/S0036141003422242.  Google Scholar

[8]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[9]

C. CaoJ. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76.  doi: 10.1007/s00205-014-0752-y.  Google Scholar

[10]

C. CaoJ. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math., 69 (2016), 1492-1531.  doi: 10.1002/cpa.21576.  Google Scholar

[11]

C. CaoJ. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: Near $H^1$ initial data, J. Funct. Anal., 272 (2017), 4606-4641.  doi: 10.1016/j.jfa.2017.01.018.  Google Scholar

[12]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[13] J.-Y. CheminB. DesjardinsI. Gallagher and E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations, The Clarendon Press, Oxford University Press, Oxford, 2006.   Google Scholar
[14]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.  Google Scholar

[15]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[16]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[17]

Z. DongJ. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 263 (2017), 3110-3146.  doi: 10.1016/j.jde.2017.04.025.  Google Scholar

[18]

M. Ersoy and T. Ngom, Existence of a global weak solution to compressible primitive equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 379-382.  doi: 10.1016/j.crma.2012.04.013.  Google Scholar

[19]

M. ErsoyT. Ngom and M. Sy, Compressible primitive equations: Formal derivation and stability of weak solutions, Nonlinearity, 24 (2011), 79-96.  doi: 10.1088/0951-7715/24/1/004.  Google Scholar

[20]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Vol. 26, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004.  Google Scholar

[21]

E. FeireislI. Gallagher and A. Novotný, A singular limit for compressible rotating fluids, SIAM J. Math. Anal., 44 (2012), 192-205.  doi: 10.1137/100808010.  Google Scholar

[22]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.  Google Scholar

[23]

E. FeireislB. J. Jin and A. Novotný, Inviscid incompressible limits of strongly stratified fluids, Asymptot. Anal., 89 (2014), 307-329.  doi: 10.3233/ASY-141231.  Google Scholar

[24]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[25]

H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[26]

B. V. Gatapov and A. V. Kazhikhov, Existence of a global solution of a model problem of atmospheric dynamics, Siberian Math. J., 46 (2005), 805-812.  doi: 10.1007/s11202-005-0079-x.  Google Scholar

[27]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[28]

F. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14 (2001), 1381-1408.   Google Scholar

[29]

B. Guo and D. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 23 pp. doi: 10.1063/1.2245207.  Google Scholar

[30]

B. Guo and D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[31]

B. GuoD. Huang and W. Wang, Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force, J. Differential Equations, 259 (2015), 2388-2407.  doi: 10.1016/j.jde.2015.03.041.  Google Scholar

[32]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17, (2007), 159–179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[33]

R. Klein, Scale-dependent models for atmospheric flows, Annual Review of Fluid Mechanics, 42 (2010), 249-274.  doi: 10.1146/annurev-fluid-121108-145537.  Google Scholar

[34]

O. Kreml, Š. Nečasová and T. Piasecki, Local existence of strong solution and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2019), 1–46. doi: 10.1017/prm.2018.165.  Google Scholar

[35]

I. KukavicaR. TemamV. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differential Equations, 250 (2011), 1719-1746.  doi: 10.1016/j.jde.2010.07.032.  Google Scholar

[36]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20, (2007), 2739–2753. doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[37]

J. Li and Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities, preprint, arXiv: 1504.06826. Google Scholar

[38]

J.-L. LionsO. P. ManleyR. Temam and S. H. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[39]

J.-L. LionsR. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[40]

J.-L. LionsR. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[41]

J.-L. LionsR. Temam and S. H. Wang, Mathematical theory for the coupled atmosphere-ocean models. (CAO Ⅲ), J. Math. Pures Appl., 74 (1995), 105-163.   Google Scholar

[42]

X. Liu and E. S. Titi, Local well-posedness of strong solutions to the three-dimensional compressible primitive equations, preprint, arXiv: 1806.09868. Google Scholar

[43]

X. Liu and E. S. Titi, Global existence of weak solutions to the compressible primitive equations of atmosphereic dynamics with degenerate viscositites, SIAM J. Math. Anal., 51 (2019), 1913-1964.  doi: 10.1137/18M1211994.  Google Scholar

[44]

X. Liu and E. S. Titi, Zero mach number limit of the compressible primitive equations part Ⅰ: Well-prepared initial data, preprint, arXiv: 1905.09367. Google Scholar

[45]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271.  doi: 10.1007/s00205-011-0485-0.  Google Scholar

[46]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

[47]

T. Tang and H. Gao, On the stability of weak solution for compressible primitive equations, Acta Appl. Math., 140 (2015), 133-145.  doi: 10.1007/s10440-014-9982-0.  Google Scholar

[48]

R. Temam and M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics, Vol. 3, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 2004.  Google Scholar

[49]

A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.  doi: 10.1007/s00222-016-0666-4.  Google Scholar

[50]

F. Wang, C. Dou and Q. Jiu, Global weak solutions to 3D compressible primitive equations with density-dependent viscosity, arXiv: 1712.04180. Google Scholar

[51]

S. Wang and P. Yang, Remarks on the Rayleigh-Bénard convection on spherical shells, J. Math. Fluid Mech., 15 (2013), 537-552.  doi: 10.1007/s00021-012-0128-8.  Google Scholar

show all references

References:
[1]

Y. Brenier, Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12 (1999), 495-512.  doi: 10.1088/0951-7715/12/3/004.  Google Scholar

[2]

Y. Brenier, Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127 (2003), 585-595.  doi: 10.1016/S0007-4497(03)00024-1.  Google Scholar

[3]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl., 86 (2006), 362-368.  doi: 10.1016/j.matpur.2006.06.005.  Google Scholar

[4]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[5]

D. BreschF. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations, 16 (2003), 77-94.   Google Scholar

[6]

D. Bresch and P.-E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. of Math., 188 (2018), 577-684.  doi: 10.4007/annals.2018.188.2.4.  Google Scholar

[7]

D. BreschA. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal., 36 (2004/05), 796-814.  doi: 10.1137/S0036141003422242.  Google Scholar

[8]

C. CaoS. IbrahimK. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[9]

C. CaoJ. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76.  doi: 10.1007/s00205-014-0752-y.  Google Scholar

[10]

C. CaoJ. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math., 69 (2016), 1492-1531.  doi: 10.1002/cpa.21576.  Google Scholar

[11]

C. CaoJ. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: Near $H^1$ initial data, J. Funct. Anal., 272 (2017), 4606-4641.  doi: 10.1016/j.jfa.2017.01.018.  Google Scholar

[12]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[13] J.-Y. CheminB. DesjardinsI. Gallagher and E. Grenier, Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations, The Clarendon Press, Oxford University Press, Oxford, 2006.   Google Scholar
[14]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.  Google Scholar

[15]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144.  doi: 10.1016/j.physd.2011.03.009.  Google Scholar

[16]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar

[17]

Z. DongJ. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 263 (2017), 3110-3146.  doi: 10.1016/j.jde.2017.04.025.  Google Scholar

[18]

M. Ersoy and T. Ngom, Existence of a global weak solution to compressible primitive equations, C. R. Math. Acad. Sci. Paris, 350 (2012), 379-382.  doi: 10.1016/j.crma.2012.04.013.  Google Scholar

[19]

M. ErsoyT. Ngom and M. Sy, Compressible primitive equations: Formal derivation and stability of weak solutions, Nonlinearity, 24 (2011), 79-96.  doi: 10.1088/0951-7715/24/1/004.  Google Scholar

[20]

E. Feireisl, Dynamics of Viscous Compressible Fluids, Vol. 26, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004.  Google Scholar

[21]

E. FeireislI. Gallagher and A. Novotný, A singular limit for compressible rotating fluids, SIAM J. Math. Anal., 44 (2012), 192-205.  doi: 10.1137/100808010.  Google Scholar

[22]

E. FeireislB. J. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14 (2012), 717-730.  doi: 10.1007/s00021-011-0091-9.  Google Scholar

[23]

E. FeireislB. J. Jin and A. Novotný, Inviscid incompressible limits of strongly stratified fluids, Asymptot. Anal., 89 (2014), 307-329.  doi: 10.3233/ASY-141231.  Google Scholar

[24]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[25]

H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar

[26]

B. V. Gatapov and A. V. Kazhikhov, Existence of a global solution of a model problem of atmospheric dynamics, Siberian Math. J., 46 (2005), 805-812.  doi: 10.1007/s11202-005-0079-x.  Google Scholar

[27]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.  Google Scholar

[28]

F. Guillén-GonzálezN. Masmoudi and M. A. Rodríguez-Bellido, Anisotropic estimates and strong solutions of the primitive equations, Differential Integral Equations, 14 (2001), 1381-1408.   Google Scholar

[29]

B. Guo and D. Huang, Existence of weak solutions and trajectory attractors for the moist atmospheric equations in geophysics, J. Math. Phys., 47 (2006), 23 pp. doi: 10.1063/1.2245207.  Google Scholar

[30]

B. Guo and D. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations, 251 (2011), 457-491.  doi: 10.1016/j.jde.2011.05.010.  Google Scholar

[31]

B. GuoD. Huang and W. Wang, Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force, J. Differential Equations, 259 (2015), 2388-2407.  doi: 10.1016/j.jde.2015.03.041.  Google Scholar

[32]

N. Ju, The global attractor for the solutions to the 3D viscous primitive equations, Discrete Contin. Dyn. Syst., 17, (2007), 159–179. doi: 10.3934/dcds.2007.17.159.  Google Scholar

[33]

R. Klein, Scale-dependent models for atmospheric flows, Annual Review of Fluid Mechanics, 42 (2010), 249-274.  doi: 10.1146/annurev-fluid-121108-145537.  Google Scholar

[34]

O. Kreml, Š. Nečasová and T. Piasecki, Local existence of strong solution and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2019), 1–46. doi: 10.1017/prm.2018.165.  Google Scholar

[35]

I. KukavicaR. TemamV. C. Vicol and M. Ziane, Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differential Equations, 250 (2011), 1719-1746.  doi: 10.1016/j.jde.2010.07.032.  Google Scholar

[36]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20, (2007), 2739–2753. doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[37]

J. Li and Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities, preprint, arXiv: 1504.06826. Google Scholar

[38]

J.-L. LionsO. P. ManleyR. Temam and S. H. Wang, Physical interpretation of the attractor dimension for the primitive equations of atmospheric circulation, J. Atmospheric Sci., 54 (1997), 1137-1143.  doi: 10.1175/1520-0469(1997)054<1137:PIOTAD>2.0.CO;2.  Google Scholar

[39]

J.-L. LionsR. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[40]

J.-L. LionsR. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[41]

J.-L. LionsR. Temam and S. H. Wang, Mathematical theory for the coupled atmosphere-ocean models. (CAO Ⅲ), J. Math. Pures Appl., 74 (1995), 105-163.   Google Scholar

[42]

X. Liu and E. S. Titi, Local well-posedness of strong solutions to the three-dimensional compressible primitive equations, preprint, arXiv: 1806.09868. Google Scholar

[43]

X. Liu and E. S. Titi, Global existence of weak solutions to the compressible primitive equations of atmosphereic dynamics with degenerate viscositites, SIAM J. Math. Anal., 51 (2019), 1913-1964.  doi: 10.1137/18M1211994.  Google Scholar

[44]

X. Liu and E. S. Titi, Zero mach number limit of the compressible primitive equations part Ⅰ: Well-prepared initial data, preprint, arXiv: 1905.09367. Google Scholar

[45]

N. Masmoudi and T. K. Wong, On the $H^s$ theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204 (2012), 231-271.  doi: 10.1007/s00205-011-0485-0.  Google Scholar

[46]

T. Şengül and S. Wang, Dynamic transitions and baroclinic instability for 3D continuously stratified Boussinesq flows, J. Math. Fluid Mech., 20 (2018), 1173-1193.  doi: 10.1007/s00021-018-0361-x.  Google Scholar

[47]

T. Tang and H. Gao, On the stability of weak solution for compressible primitive equations, Acta Appl. Math., 140 (2015), 133-145.  doi: 10.1007/s10440-014-9982-0.  Google Scholar

[48]

R. Temam and M. Ziane, Some Mathematical Problems in Geophysical Fluid Dynamics, Vol. 3, Handbook of Mathematical Fluid Dynamics, North-Holland, Amsterdam, 2004.  Google Scholar

[49]

A. F. Vasseur and C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935-974.  doi: 10.1007/s00222-016-0666-4.  Google Scholar

[50]

F. Wang, C. Dou and Q. Jiu, Global weak solutions to 3D compressible primitive equations with density-dependent viscosity, arXiv: 1712.04180. Google Scholar

[51]

S. Wang and P. Yang, Remarks on the Rayleigh-Bénard convection on spherical shells, J. Math. Fluid Mech., 15 (2013), 537-552.  doi: 10.1007/s00021-012-0128-8.  Google Scholar

[1]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[6]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[7]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[14]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[15]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[16]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[19]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[20]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]