We solve Cauchy problems for some $ \mu $-Camassa-Holm integro-partial differential equations in the analytic category. The equations to be considered are $ \mu $CH of Khesin-Lenells-Misiołek, $ \mu $DP of Lenells-Misiołek-Tiğlay, the higher-order $ \mu $CH of Wang-Li-Qiao and the non-quasilinear version of Qu-Fu-Liu. We prove the unique local solvability of the Cauchy problems and provide an estimate of the lifespan of the solutions. Moreover, we show the existence of a unique global-in-time analytic solution for $ \mu $CH, $ \mu $DP and the higher-order $ \mu $CH. The present work is the first result of such a global nature for these equations.
Citation: |
[1] | R. F. Barostichi, A. A. Himonas and G. Petronilho, Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal., 270 (2016), 330-358. doi: 10.1016/j.jfa.2015.06.008. |
[2] | R. F. Barostichi, A. A. Himonas and G. Petronilho, The power series method for nonlocal and nonlinear evolution equations, J. Math. Anal. Appl., 443 (2016), 834-847. doi: 10.1016/j.jmaa.2016.05.061. |
[3] | R. F. Barostichi, A. A. Himonas and G. Petronilho, Global analyticity for a generalized Camassa-Holm equation and decay of the radius of spatial analyticity, J. Differential Equations, 263 (2017), 732-764. doi: 10.1016/j.jde.2017.02.052. |
[4] | R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664. doi: 10.1103/PhysRevLett.71.1661. |
[5] | G. M. Coclite, H. Holden and K. H. Karlsen, Well-posedness of higher-order Camassa-Holm equations, J. Differential Equations, 246 (2009), 929-963. doi: 10.1016/j.jde.2008.04.014. |
[6] | A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362. doi: 10.5802/aif.1757. |
[7] | A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568. doi: 10.4007/annals.2011.173.1.12. |
[8] | R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. II: Partial Differential Equations, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. |
[9] | J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation, Math. Z, 269 (2011), 1137-1153. doi: 10.1007/s00209-010-0778-2. |
[10] | A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. doi: 10.1016/0167-2789(81)90004-X. |
[11] | Y. Fu, A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity, Discrete Contin. Dyn. Syst., 35 (2015), 2011-2039. doi: 10.3934/dcds.2015.35.2011. |
[12] | A. A. Himonas and G. Misiołek, Analyticity of the Cauchy problem for an integrable evolution equation, Math. Ann., 327 (2003), 575-584. doi: 10.1007/s00208-003-0466-1. |
[13] | T. Kato and K. Masuda, Nonlinear evolution equations and analyticity. Ⅰ., Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 455-467. doi: 10.1016/S0294-1449(16)30377-8. |
[14] | T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. |
[15] | B. Khesin, J. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656. doi: 10.1007/s00208-008-0250-3. |
[16] | H. Komatsu, A characterization of real analytic functions, Proc. Japan Acad., 36 (1960), 90-93. doi: 10.3792/pja/1195524081. |
[17] | T. Kotake and M. S. Narasimhan, Regularity theorems for fractional powers of a linear elliptic operator, Bull. Soc. Math. France, 90 (1962), 449-471. |
[18] | J. Lenells, G. Misiołek and F. Tiğlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010), 129-161. doi: 10.1007/s00220-010-1069-9. |
[19] | H. P. McKean, Breakdown of a shallow water equation, Asian J. Math., 2 (1998), 867-874. doi: 10.4310/AJM.1998.v2.n4.a10. |
[20] | C. Qu, Y. Fu and Y. Liu, Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa-Holm equation, J. Funct. Anal., 266 (2014), 433-477. doi: 10.1016/j.jfa.2013.09.021. |
[21] | F. Wang, F. Li and Z. Qiao, On the Cauchy problem for a higher-order $\mu$-Camassa-Holm equation, Discrete Contin. Dyn. Syst., 38 (2018), 4163-4187. doi: 10.3934/dcds.2018181. |
[22] | F. Wang, F. Li and Z. Qiao, Well-posedness and peakons for a higher-order $\mu$-Camassa-Holm equation, Nonlinear Anal., 175 (2018), 210-236. doi: 10.1016/j.na.2018.06.001. |
[23] | Z. Zhang and Z. Yin, Global existence for a two-component Camassa-Holm system with an arbitrary smooth function, Discrete Contin. Dyn. Syst., 38 (2018), 5523-5536. doi: 10.3934/dcds.2018243. |