July  2020, 40(7): 4427-4451. doi: 10.3934/dcds.2020185

A periodic-parabolic Droop model for two species competition in an unstirred chemostat

1. 

School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

3. 

Department of Natural Science in the Center for General Education, Chang Gung University, Guishan, Taoyuan 333, Taiwan

4. 

Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan

* Corresponding author: Feng-Bin Wang

Received  August 2019 Revised  December 2019 Published  April 2020

We study a periodic-parabolic Droop model of two species competing for a single-limited nutrient in an unstirred chemostat, where the nutrient is added to the culture vessel by way of periodic forcing function in time. For the single species model, we establish a threshold type result on the extinction/persistence of the species in terms of the sign of a principal eigenvalue associated with a nonlinear periodic eigenvalue problem. In particular, when diffusion rate is sufficiently small or large, the sign can be determined. We then show that for the competition model, when diffusion rates for both species are small, there exists a coexistence periodic solution.

Citation: Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185
References:
[1]

A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae, J. Theor. Biol., 84 (1980), 189-203.   Google Scholar

[2]

A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture, in Mathematics in Microbiology, Academic Press, London, 1983.  Google Scholar

[3]

M. R. Droop, Vitamin B12 and marine ecology. Ⅳ. The kinetics of uptake, growth and inhibition in monochrysis lutheri, Journal of the Marine Biological Association of the United Kingdom, 48 (1968), 689-733.  doi: 10.1017/S0025315400019238.  Google Scholar

[4]

M. R. Droop, Some thoughts on nutrient limitation in algae, Journal of Phycology, 9 (1973), 264-272.   Google Scholar

[5]

H. I. Freedman and X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Differential Equations, 137 (1997), 340-362.  doi: 10.1006/jdeq.1997.3264.  Google Scholar

[6]

J. P. Grover, Dynamics of competition among microalgae in variable environments: Experimental tests of alternative models, Oikos, 62 (1991), 231-243.   Google Scholar

[7]

J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model, American Naturalist, 138 (1991), 811-835.  doi: 10.1086/285254.  Google Scholar

[8]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theor. Biol., 158 (1992), 409-428.   Google Scholar

[9]

J. P. Grover, Is storage an adaptation to spatial variation in resource availability?, American Naturalist, 173 (2009), E44–E61. doi: 10.1086/595751.  Google Scholar

[10]

J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, American Naturalist, 178 (2011), E124–E148. doi: 10.1086/662163.  Google Scholar

[11]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Vol. 25, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[13]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Vol. 247, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[14]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[15]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617.  doi: 10.1137/070700784.  Google Scholar

[16]

S.-B. HsuJ. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.  doi: 10.1016/j.jde.2009.12.014.  Google Scholar

[17]

S.-B. HsuK.-Y. Lam and F.-B. Wang, Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.  doi: 10.1007/s00285-017-1134-5.  Google Scholar

[18]

S.-B. HsuJ. Shi and F.-B. Wang, Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.  doi: 10.3934/dcdsb.2014.19.3169.  Google Scholar

[19]

S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.  doi: 10.1137/0153051.  Google Scholar

[20]

S.-B. HsuF.-B. Wang and X.-Q. Zhao, Competition for two essential resources with internal storage and periodic input, Differential Integral Equations, 29 (2016), 601-630.   Google Scholar

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[22]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete Contin. Dyn. Syst., 8 (2002), 519-562.  doi: 10.3934/dcds.2002.8.519.  Google Scholar

[24]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[25]

L. MeiS.-B. Hsu and F.-B. Wang, Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.  doi: 10.3934/dcdsb.2016.21.607.  Google Scholar

[26]

J. Monod, La technique de culture continue théorie et applications, in Selected Papers in Molecular Biology by Jacques Monod, Academic Press, 1978. doi: 10.1016/B978-0-12-460482-7.50023-3.  Google Scholar

[27]

F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, Journal of Phycology, 23 (1987), 137-150.   Google Scholar

[28]

R. M. Nisbet and W. S. C. Gurney, Modelling fluctuating populations, Acta Appl. Math., 4 (1985). Google Scholar

[29]

S. S. Pilyugin and P. Waltman, Competition in the unstirred chemostat with periodic input and washout, SIAM J. Appl. Math., 59 (1999), 1157-1177.  doi: 10.1137/S0036139997323954.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Vol. 41, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[32]

H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol., 35 (1997), 545-556.  doi: 10.1007/s002850050065.  Google Scholar

[33]

H. L. Smith and P. Waltman, Competition for a single limiting resouce in continuous culture: The variable-yield model, SIAM J. Appl. Math., 34 (1994), 1113-1131.  doi: 10.1137/S0036139993245344.  Google Scholar

[34]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Vol. 13, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[35]

U. Sommer, Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton, Limnology and Oceanography, 30 (1985), 335-346.   Google Scholar

[36]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, in Ordered Structures and Applications, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[37]

M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat, Bull. Math. Biol., 71 (2009), 145-161.  doi: 10.1007/s11538-008-9357-7.  Google Scholar

[38]

X.-Q. Zhao, Dynamical Systems in Population Biology, Vol. 16, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer-Verlag, New York, 2013. doi: 10.1007/978-3-319-56433-3.  Google Scholar

show all references

References:
[1]

A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae, J. Theor. Biol., 84 (1980), 189-203.   Google Scholar

[2]

A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture, in Mathematics in Microbiology, Academic Press, London, 1983.  Google Scholar

[3]

M. R. Droop, Vitamin B12 and marine ecology. Ⅳ. The kinetics of uptake, growth and inhibition in monochrysis lutheri, Journal of the Marine Biological Association of the United Kingdom, 48 (1968), 689-733.  doi: 10.1017/S0025315400019238.  Google Scholar

[4]

M. R. Droop, Some thoughts on nutrient limitation in algae, Journal of Phycology, 9 (1973), 264-272.   Google Scholar

[5]

H. I. Freedman and X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Differential Equations, 137 (1997), 340-362.  doi: 10.1006/jdeq.1997.3264.  Google Scholar

[6]

J. P. Grover, Dynamics of competition among microalgae in variable environments: Experimental tests of alternative models, Oikos, 62 (1991), 231-243.   Google Scholar

[7]

J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model, American Naturalist, 138 (1991), 811-835.  doi: 10.1086/285254.  Google Scholar

[8]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theor. Biol., 158 (1992), 409-428.   Google Scholar

[9]

J. P. Grover, Is storage an adaptation to spatial variation in resource availability?, American Naturalist, 173 (2009), E44–E61. doi: 10.1086/595751.  Google Scholar

[10]

J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, American Naturalist, 178 (2011), E124–E148. doi: 10.1086/662163.  Google Scholar

[11]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Vol. 25, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[13]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Vol. 247, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[14]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[15]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617.  doi: 10.1137/070700784.  Google Scholar

[16]

S.-B. HsuJ. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.  doi: 10.1016/j.jde.2009.12.014.  Google Scholar

[17]

S.-B. HsuK.-Y. Lam and F.-B. Wang, Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.  doi: 10.1007/s00285-017-1134-5.  Google Scholar

[18]

S.-B. HsuJ. Shi and F.-B. Wang, Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.  doi: 10.3934/dcdsb.2014.19.3169.  Google Scholar

[19]

S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.  doi: 10.1137/0153051.  Google Scholar

[20]

S.-B. HsuF.-B. Wang and X.-Q. Zhao, Competition for two essential resources with internal storage and periodic input, Differential Integral Equations, 29 (2016), 601-630.   Google Scholar

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[22]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete Contin. Dyn. Syst., 8 (2002), 519-562.  doi: 10.3934/dcds.2002.8.519.  Google Scholar

[24]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[25]

L. MeiS.-B. Hsu and F.-B. Wang, Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.  doi: 10.3934/dcdsb.2016.21.607.  Google Scholar

[26]

J. Monod, La technique de culture continue théorie et applications, in Selected Papers in Molecular Biology by Jacques Monod, Academic Press, 1978. doi: 10.1016/B978-0-12-460482-7.50023-3.  Google Scholar

[27]

F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, Journal of Phycology, 23 (1987), 137-150.   Google Scholar

[28]

R. M. Nisbet and W. S. C. Gurney, Modelling fluctuating populations, Acta Appl. Math., 4 (1985). Google Scholar

[29]

S. S. Pilyugin and P. Waltman, Competition in the unstirred chemostat with periodic input and washout, SIAM J. Appl. Math., 59 (1999), 1157-1177.  doi: 10.1137/S0036139997323954.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Vol. 41, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[32]

H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol., 35 (1997), 545-556.  doi: 10.1007/s002850050065.  Google Scholar

[33]

H. L. Smith and P. Waltman, Competition for a single limiting resouce in continuous culture: The variable-yield model, SIAM J. Appl. Math., 34 (1994), 1113-1131.  doi: 10.1137/S0036139993245344.  Google Scholar

[34]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Vol. 13, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[35]

U. Sommer, Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton, Limnology and Oceanography, 30 (1985), 335-346.   Google Scholar

[36]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, in Ordered Structures and Applications, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[37]

M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat, Bull. Math. Biol., 71 (2009), 145-161.  doi: 10.1007/s11538-008-9357-7.  Google Scholar

[38]

X.-Q. Zhao, Dynamical Systems in Population Biology, Vol. 16, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer-Verlag, New York, 2013. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[20]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (100)
  • HTML views (79)
  • Cited by (0)

Other articles
by authors

[Back to Top]