July  2020, 40(7): 4427-4451. doi: 10.3934/dcds.2020185

A periodic-parabolic Droop model for two species competition in an unstirred chemostat

1. 

School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

3. 

Department of Natural Science in the Center for General Education, Chang Gung University, Guishan, Taoyuan 333, Taiwan

4. 

Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan

* Corresponding author: Feng-Bin Wang

Received  August 2019 Revised  December 2019 Published  April 2020

We study a periodic-parabolic Droop model of two species competing for a single-limited nutrient in an unstirred chemostat, where the nutrient is added to the culture vessel by way of periodic forcing function in time. For the single species model, we establish a threshold type result on the extinction/persistence of the species in terms of the sign of a principal eigenvalue associated with a nonlinear periodic eigenvalue problem. In particular, when diffusion rate is sufficiently small or large, the sign can be determined. We then show that for the competition model, when diffusion rates for both species are small, there exists a coexistence periodic solution.

Citation: Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185
References:
[1]

A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae, J. Theor. Biol., 84 (1980), 189-203.   Google Scholar

[2]

A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture, in Mathematics in Microbiology, Academic Press, London, 1983.  Google Scholar

[3]

M. R. Droop, Vitamin B12 and marine ecology. Ⅳ. The kinetics of uptake, growth and inhibition in monochrysis lutheri, Journal of the Marine Biological Association of the United Kingdom, 48 (1968), 689-733.  doi: 10.1017/S0025315400019238.  Google Scholar

[4]

M. R. Droop, Some thoughts on nutrient limitation in algae, Journal of Phycology, 9 (1973), 264-272.   Google Scholar

[5]

H. I. Freedman and X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Differential Equations, 137 (1997), 340-362.  doi: 10.1006/jdeq.1997.3264.  Google Scholar

[6]

J. P. Grover, Dynamics of competition among microalgae in variable environments: Experimental tests of alternative models, Oikos, 62 (1991), 231-243.   Google Scholar

[7]

J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model, American Naturalist, 138 (1991), 811-835.  doi: 10.1086/285254.  Google Scholar

[8]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theor. Biol., 158 (1992), 409-428.   Google Scholar

[9]

J. P. Grover, Is storage an adaptation to spatial variation in resource availability?, American Naturalist, 173 (2009), E44–E61. doi: 10.1086/595751.  Google Scholar

[10]

J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, American Naturalist, 178 (2011), E124–E148. doi: 10.1086/662163.  Google Scholar

[11]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Vol. 25, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[13]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Vol. 247, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[14]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[15]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617.  doi: 10.1137/070700784.  Google Scholar

[16]

S.-B. HsuJ. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.  doi: 10.1016/j.jde.2009.12.014.  Google Scholar

[17]

S.-B. HsuK.-Y. Lam and F.-B. Wang, Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.  doi: 10.1007/s00285-017-1134-5.  Google Scholar

[18]

S.-B. HsuJ. Shi and F.-B. Wang, Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.  doi: 10.3934/dcdsb.2014.19.3169.  Google Scholar

[19]

S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.  doi: 10.1137/0153051.  Google Scholar

[20]

S.-B. HsuF.-B. Wang and X.-Q. Zhao, Competition for two essential resources with internal storage and periodic input, Differential Integral Equations, 29 (2016), 601-630.   Google Scholar

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[22]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete Contin. Dyn. Syst., 8 (2002), 519-562.  doi: 10.3934/dcds.2002.8.519.  Google Scholar

[24]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[25]

L. MeiS.-B. Hsu and F.-B. Wang, Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.  doi: 10.3934/dcdsb.2016.21.607.  Google Scholar

[26]

J. Monod, La technique de culture continue théorie et applications, in Selected Papers in Molecular Biology by Jacques Monod, Academic Press, 1978. doi: 10.1016/B978-0-12-460482-7.50023-3.  Google Scholar

[27]

F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, Journal of Phycology, 23 (1987), 137-150.   Google Scholar

[28]

R. M. Nisbet and W. S. C. Gurney, Modelling fluctuating populations, Acta Appl. Math., 4 (1985). Google Scholar

[29]

S. S. Pilyugin and P. Waltman, Competition in the unstirred chemostat with periodic input and washout, SIAM J. Appl. Math., 59 (1999), 1157-1177.  doi: 10.1137/S0036139997323954.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Vol. 41, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[32]

H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol., 35 (1997), 545-556.  doi: 10.1007/s002850050065.  Google Scholar

[33]

H. L. Smith and P. Waltman, Competition for a single limiting resouce in continuous culture: The variable-yield model, SIAM J. Appl. Math., 34 (1994), 1113-1131.  doi: 10.1137/S0036139993245344.  Google Scholar

[34]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Vol. 13, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[35]

U. Sommer, Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton, Limnology and Oceanography, 30 (1985), 335-346.   Google Scholar

[36]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, in Ordered Structures and Applications, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[37]

M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat, Bull. Math. Biol., 71 (2009), 145-161.  doi: 10.1007/s11538-008-9357-7.  Google Scholar

[38]

X.-Q. Zhao, Dynamical Systems in Population Biology, Vol. 16, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer-Verlag, New York, 2013. doi: 10.1007/978-3-319-56433-3.  Google Scholar

show all references

References:
[1]

A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae, J. Theor. Biol., 84 (1980), 189-203.   Google Scholar

[2]

A. Cunningham and R. M. Nisbet, Transients and oscillations in continuous culture, in Mathematics in Microbiology, Academic Press, London, 1983.  Google Scholar

[3]

M. R. Droop, Vitamin B12 and marine ecology. Ⅳ. The kinetics of uptake, growth and inhibition in monochrysis lutheri, Journal of the Marine Biological Association of the United Kingdom, 48 (1968), 689-733.  doi: 10.1017/S0025315400019238.  Google Scholar

[4]

M. R. Droop, Some thoughts on nutrient limitation in algae, Journal of Phycology, 9 (1973), 264-272.   Google Scholar

[5]

H. I. Freedman and X.-Q. Zhao, Global asymptotics in some quasimonotone reaction-diffusion systems with delays, J. Differential Equations, 137 (1997), 340-362.  doi: 10.1006/jdeq.1997.3264.  Google Scholar

[6]

J. P. Grover, Dynamics of competition among microalgae in variable environments: Experimental tests of alternative models, Oikos, 62 (1991), 231-243.   Google Scholar

[7]

J. P. Grover, Resource competition in a variable environment: Phytoplankton growing according to the variable-internal-stores model, American Naturalist, 138 (1991), 811-835.  doi: 10.1086/285254.  Google Scholar

[8]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theor. Biol., 158 (1992), 409-428.   Google Scholar

[9]

J. P. Grover, Is storage an adaptation to spatial variation in resource availability?, American Naturalist, 173 (2009), E44–E61. doi: 10.1086/595751.  Google Scholar

[10]

J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, American Naturalist, 178 (2011), E124–E148. doi: 10.1086/662163.  Google Scholar

[11]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Vol. 25, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Vol. 840, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[13]

P. Hess, Periodic-parabolic Boundary Value Problems and Positivity, Vol. 247, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1991.  Google Scholar

[14]

M. W. HirschH. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.  Google Scholar

[15]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617.  doi: 10.1137/070700784.  Google Scholar

[16]

S.-B. HsuJ. Jiang and F.-B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.  doi: 10.1016/j.jde.2009.12.014.  Google Scholar

[17]

S.-B. HsuK.-Y. Lam and F.-B. Wang, Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.  doi: 10.1007/s00285-017-1134-5.  Google Scholar

[18]

S.-B. HsuJ. Shi and F.-B. Wang, Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.  doi: 10.3934/dcdsb.2014.19.3169.  Google Scholar

[19]

S.-B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.  doi: 10.1137/0153051.  Google Scholar

[20]

S.-B. HsuF.-B. Wang and X.-Q. Zhao, Competition for two essential resources with internal storage and periodic input, Differential Integral Equations, 29 (2016), 601-630.   Google Scholar

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[22]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[23]

J. Mallet-Paret and R. D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators, Discrete Contin. Dyn. Syst., 8 (2002), 519-562.  doi: 10.3934/dcds.2002.8.519.  Google Scholar

[24]

J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theory Appl., 7 (2010), 103-143.  doi: 10.1007/s11784-010-0010-3.  Google Scholar

[25]

L. MeiS.-B. Hsu and F.-B. Wang, Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.  doi: 10.3934/dcdsb.2016.21.607.  Google Scholar

[26]

J. Monod, La technique de culture continue théorie et applications, in Selected Papers in Molecular Biology by Jacques Monod, Academic Press, 1978. doi: 10.1016/B978-0-12-460482-7.50023-3.  Google Scholar

[27]

F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, Journal of Phycology, 23 (1987), 137-150.   Google Scholar

[28]

R. M. Nisbet and W. S. C. Gurney, Modelling fluctuating populations, Acta Appl. Math., 4 (1985). Google Scholar

[29]

S. S. Pilyugin and P. Waltman, Competition in the unstirred chemostat with periodic input and washout, SIAM J. Appl. Math., 59 (1999), 1157-1177.  doi: 10.1137/S0036139997323954.  Google Scholar

[30]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[31]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Vol. 41, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1995.  Google Scholar

[32]

H. L. Smith, The periodically forced Droop model for phytoplankton growth in a chemostat, J. Math. Biol., 35 (1997), 545-556.  doi: 10.1007/s002850050065.  Google Scholar

[33]

H. L. Smith and P. Waltman, Competition for a single limiting resouce in continuous culture: The variable-yield model, SIAM J. Appl. Math., 34 (1994), 1113-1131.  doi: 10.1137/S0036139993245344.  Google Scholar

[34]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Vol. 13, Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.  Google Scholar

[35]

U. Sommer, Comparison between steady state and non-steady state competition: Experiments with natural phytoplankton, Limnology and Oceanography, 30 (1985), 335-346.   Google Scholar

[36]

H. R. Thieme, Spectral radii and Collatz-Wielandt numbers for homogeneous order-preserving maps and the monotone companion norm, in Ordered Structures and Applications, Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-27842-1_26.  Google Scholar

[37]

M. C. White and X.-Q. Zhao, A periodic Droop model for two species competition in a chemostat, Bull. Math. Biol., 71 (2009), 145-161.  doi: 10.1007/s11538-008-9357-7.  Google Scholar

[38]

X.-Q. Zhao, Dynamical Systems in Population Biology, Vol. 16, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer-Verlag, New York, 2013. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[1]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[2]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[3]

Zhibo Cheng, Xiaoxiao Cui. Positive periodic solution for generalized Basener-Ross model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020101

[4]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020199

[5]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[6]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

[7]

Gui-Dong Li, Yong-Yong Li, Xiao-Qi Liu, Chun-Lei Tang. A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1351-1365. doi: 10.3934/cpaa.2020066

[8]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[9]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[10]

Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure & Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175

[11]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[12]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[13]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[14]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020094

[15]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

[16]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[17]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[18]

Meili Li, Maoan Han, Chunhai Kou. The existence of positive periodic solutions of a generalized. Mathematical Biosciences & Engineering, 2008, 5 (4) : 803-812. doi: 10.3934/mbe.2008.5.803

[19]

Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155

[20]

Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (74)
  • HTML views (77)
  • Cited by (0)

Other articles
by authors

[Back to Top]