• Previous Article
    Corrigendum to "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst., 36 (2016), 5743–5761]
  • DCDS Home
  • This Issue
  • Next Article
    Large spectral gap induced by small delay and its application to reduction
July  2020, 40(7): 4565-4576. doi: 10.3934/dcds.2020191

On the blow up solutions to a two-component cubic Camassa-Holm system with peakons

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

2. 

Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China

Received  December 2019 Revised  January 2020 Published  April 2020

This paper is concerned with the Cauchy problem for a two- component cubic Camassa-Holm system with peakons, which is a natural multi-component extension of the single Fokas-Olver-Rosenau-Qiao equation. By sufficiently exploiting the fine structure of the system, we derive two useful conservation laws which turns out an exponential increase estimate for the $ L^\infty $-norm of the strong solution within its lifespan. As a result, two new blow-up solutions with certain initial profiles are established.

Citation: Kai Yan. On the blow up solutions to a two-component cubic Camassa-Holm system with peakons. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4565-4576. doi: 10.3934/dcds.2020191
References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[3]

R. M. ChenF. GaoY. Liu and C. Qu, Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal., 270 (2016), 2343-2374.  doi: 10.1016/j.jfa.2016.01.017.  Google Scholar

[4]

A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[6]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.   Google Scholar

[7]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.   Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[10]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.   Google Scholar

[11]

H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.  doi: 10.1007/BF01170373.  Google Scholar

[12]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[13]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501, 4501–4504. doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[14]

A. Fokas, On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.  doi: 10.1016/0167-2789(95)00133-O.  Google Scholar

[15]

G. GuiY. LiuP. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.  doi: 10.1007/s00220-012-1566-0.  Google Scholar

[16]

A. A. Himonas and D. Mantzavinos, Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear Sci., 24 (2014), 1105-1124.  doi: 10.1007/s00332-014-9212-y.  Google Scholar

[17]

X. LiuY. Liu and C. Qu, Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.  doi: 10.1016/j.aim.2013.12.032.  Google Scholar

[18]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[19]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.  doi: 10.1103/PhysRevE.53.1900.  Google Scholar

[20]

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701, 9 pp. doi: 10.1063/1.2365758.  Google Scholar

[21]

C. QuX. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.  doi: 10.1007/s00220-013-1749-3.  Google Scholar

[22]

J. Song, C. Qu and Z. Qiao, A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 013503, 9 pp. doi: 10.1063/1.3530865.  Google Scholar

[23]

G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.  Google Scholar

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.   Google Scholar

[25]

K. YanZ. Qiao and Y. Zhang, Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions, J. Differential Equations, 259 (2015), 6644-6671.  doi: 10.1016/j.jde.2015.08.004.  Google Scholar

show all references

References:
[1]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[3]

R. M. ChenF. GaoY. Liu and C. Qu, Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal., 270 (2016), 2343-2374.  doi: 10.1016/j.jfa.2016.01.017.  Google Scholar

[4]

A. Constantin, Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.  doi: 10.5802/aif.1757.  Google Scholar

[5]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[6]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.   Google Scholar

[7]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.   Google Scholar

[8]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[9]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[10]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.   Google Scholar

[11]

H.-H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.  doi: 10.1007/BF01170373.  Google Scholar

[12]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[13]

H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501, 4501–4504. doi: 10.1103/PhysRevLett.87.194501.  Google Scholar

[14]

A. Fokas, On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.  doi: 10.1016/0167-2789(95)00133-O.  Google Scholar

[15]

G. GuiY. LiuP. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.  doi: 10.1007/s00220-012-1566-0.  Google Scholar

[16]

A. A. Himonas and D. Mantzavinos, Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear Sci., 24 (2014), 1105-1124.  doi: 10.1007/s00332-014-9212-y.  Google Scholar

[17]

X. LiuY. Liu and C. Qu, Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.  doi: 10.1016/j.aim.2013.12.032.  Google Scholar

[18]

Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[19]

P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.  doi: 10.1103/PhysRevE.53.1900.  Google Scholar

[20]

Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701, 9 pp. doi: 10.1063/1.2365758.  Google Scholar

[21]

C. QuX. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.  doi: 10.1007/s00220-013-1749-3.  Google Scholar

[22]

J. Song, C. Qu and Z. Qiao, A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 013503, 9 pp. doi: 10.1063/1.3530865.  Google Scholar

[23]

G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.  Google Scholar

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.   Google Scholar

[25]

K. YanZ. Qiao and Y. Zhang, Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions, J. Differential Equations, 259 (2015), 6644-6671.  doi: 10.1016/j.jde.2015.08.004.  Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[14]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[18]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[19]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[20]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (112)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]