-
Previous Article
Corrigendum to "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst., 36 (2016), 5743–5761]
- DCDS Home
- This Issue
-
Next Article
Large spectral gap induced by small delay and its application to reduction
On the blow up solutions to a two-component cubic Camassa-Holm system with peakons
1. | School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China |
2. | Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China |
This paper is concerned with the Cauchy problem for a two- component cubic Camassa-Holm system with peakons, which is a natural multi-component extension of the single Fokas-Olver-Rosenau-Qiao equation. By sufficiently exploiting the fine structure of the system, we derive two useful conservation laws which turns out an exponential increase estimate for the $ L^\infty $-norm of the strong solution within its lifespan. As a result, two new blow-up solutions with certain initial profiles are established.
References:
[1] |
A. Bressan and A. Constantin,
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[2] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[3] |
R. M. Chen, F. Gao, Y. Liu and C. Qu,
Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal., 270 (2016), 2343-2374.
doi: 10.1016/j.jfa.2016.01.017. |
[4] |
A. Constantin,
Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[5] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[6] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[7] |
A. Constantin and J. Escher,
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
|
[8] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[9] |
A. Constantin and J. Escher,
Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12. |
[10] |
A. Constantin and W. A. Strauss,
Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
|
[11] |
H.-H. Dai,
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[12] |
R. Danchin,
A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.
|
[13] |
H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501, 4501–4504.
doi: 10.1103/PhysRevLett.87.194501. |
[14] |
A. Fokas,
On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.
doi: 10.1016/0167-2789(95)00133-O. |
[15] |
G. Gui, Y. Liu, P. Olver and C. Qu,
Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.
doi: 10.1007/s00220-012-1566-0. |
[16] |
A. A. Himonas and D. Mantzavinos,
Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear Sci., 24 (2014), 1105-1124.
doi: 10.1007/s00332-014-9212-y. |
[17] |
X. Liu, Y. Liu and C. Qu,
Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.
doi: 10.1016/j.aim.2013.12.032. |
[18] |
Y. Liu and Z. Yin,
Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.
doi: 10.1007/s00220-006-0082-5. |
[19] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[20] |
Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701, 9 pp.
doi: 10.1063/1.2365758. |
[21] |
C. Qu, X. Liu and Y. Liu,
Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3. |
[22] |
J. Song, C. Qu and Z. Qiao, A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 013503, 9 pp.
doi: 10.1063/1.3530865. |
[23] |
G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[24] |
Z. Xin and P. Zhang,
On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
|
[25] |
K. Yan, Z. Qiao and Y. Zhang,
Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions, J. Differential Equations, 259 (2015), 6644-6671.
doi: 10.1016/j.jde.2015.08.004. |
show all references
References:
[1] |
A. Bressan and A. Constantin,
Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.
doi: 10.1007/s00205-006-0010-z. |
[2] |
R. Camassa and D. D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[3] |
R. M. Chen, F. Gao, Y. Liu and C. Qu,
Analysis on the blow-up of solutions to a class of integrable peakon equations, J. Funct. Anal., 270 (2016), 2343-2374.
doi: 10.1016/j.jfa.2016.01.017. |
[4] |
A. Constantin,
Global existence of solutions and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.
doi: 10.5802/aif.1757. |
[5] |
A. Constantin,
The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.
doi: 10.1007/s00222-006-0002-5. |
[6] |
A. Constantin and J. Escher,
Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303-328.
|
[7] |
A. Constantin and J. Escher,
Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.
|
[8] |
A. Constantin and J. Escher,
Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.
doi: 10.1007/BF02392586. |
[9] |
A. Constantin and J. Escher,
Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.
doi: 10.4007/annals.2011.173.1.12. |
[10] |
A. Constantin and W. A. Strauss,
Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.
|
[11] |
H.-H. Dai,
Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.
doi: 10.1007/BF01170373. |
[12] |
R. Danchin,
A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.
|
[13] |
H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501, 4501–4504.
doi: 10.1103/PhysRevLett.87.194501. |
[14] |
A. Fokas,
On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.
doi: 10.1016/0167-2789(95)00133-O. |
[15] |
G. Gui, Y. Liu, P. Olver and C. Qu,
Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.
doi: 10.1007/s00220-012-1566-0. |
[16] |
A. A. Himonas and D. Mantzavinos,
Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J. Nonlinear Sci., 24 (2014), 1105-1124.
doi: 10.1007/s00332-014-9212-y. |
[17] |
X. Liu, Y. Liu and C. Qu,
Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math., 255 (2014), 1-37.
doi: 10.1016/j.aim.2013.12.032. |
[18] |
Y. Liu and Z. Yin,
Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.
doi: 10.1007/s00220-006-0082-5. |
[19] |
P. J. Olver and P. Rosenau,
Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.
doi: 10.1103/PhysRevE.53.1900. |
[20] |
Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701, 9 pp.
doi: 10.1063/1.2365758. |
[21] |
C. Qu, X. Liu and Y. Liu,
Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys., 322 (2013), 967-997.
doi: 10.1007/s00220-013-1749-3. |
[22] |
J. Song, C. Qu and Z. Qiao, A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 013503, 9 pp.
doi: 10.1063/1.3530865. |
[23] |
G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. |
[24] |
Z. Xin and P. Zhang,
On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.
|
[25] |
K. Yan, Z. Qiao and Y. Zhang,
Blow-up phenomena for an integrable two-component Camassa-Holm system with cubic nonlinearity and peakon solutions, J. Differential Equations, 259 (2015), 6644-6671.
doi: 10.1016/j.jde.2015.08.004. |
[1] |
Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041 |
[2] |
Wenxia Chen, Jingyi Liu, Danping Ding, Lixin Tian. Blow-up for two-component Camassa-Holm equation with generalized weak dissipation. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3769-3784. doi: 10.3934/cpaa.2020166 |
[3] |
Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112 |
[4] |
Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613 |
[5] |
Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243 |
[6] |
Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459 |
[7] |
Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699 |
[8] |
Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421 |
[9] |
Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140 |
[10] |
Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153 |
[11] |
Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160 |
[12] |
Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239 |
[13] |
Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281 |
[14] |
Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493 |
[15] |
Yingying Li, Ying Fu, Changzheng Qu. The two-component $ \mu $-Camassa–Holm system with peaked solutions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5929-5954. doi: 10.3934/dcds.2020253 |
[16] |
Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011 |
[17] |
Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025 |
[18] |
David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597 |
[19] |
Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263 |
[20] |
Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]