July  2020, 40(7): 4577-4578. doi: 10.3934/dcds.2020192

Corrigendum to "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst., 36 (2016), 5743–5761]

1. 

Micron Memory Japan, G.K., Higashihiroshima, Hiroshima 739-0153, Japan

2. 

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

* Corresponding author

Received  January 2020 Published  April 2020

We correct an error which has occurred in the proof of Lemma 4.1 in the paper "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst., 36 (2016), 5743-5761].

Citation: Yuji Sagawa, Hideaki Sunagawa. Corrigendum to "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst., 36 (2016), 5743–5761]. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4577-4578. doi: 10.3934/dcds.2020192
References:
[1]

Y. Sagawa and H. Sunagawa, The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension, Discrete Contin. Dyn. Syst., 36 (2016), no. 10, 5743–5761. doi: 10.3934/dcds.2016052.

show all references

References:
[1]

Y. Sagawa and H. Sunagawa, The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension, Discrete Contin. Dyn. Syst., 36 (2016), no. 10, 5743–5761. doi: 10.3934/dcds.2016052.

[1]

Yuji Sagawa, Hideaki Sunagawa. The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5743-5761. doi: 10.3934/dcds.2016052

[2]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[3]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[4]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[5]

Nakao Hayashi, Pavel I. Naumkin, Patrick-Nicolas Pipolo. Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 685-695. doi: 10.3934/dcds.1999.5.685

[6]

Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2089-2104. doi: 10.3934/cpaa.2017103

[7]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[8]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

[9]

Razvan Mosincat, Haewon Yoon. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 47-80. doi: 10.3934/dcds.2020003

[10]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[11]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[12]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[13]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[14]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[15]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[16]

Zhaowei Lou, Jianguo Si, Shimin Wang. Invariant tori for the derivative nonlinear Schrödinger equation with nonlinear term depending on spatial variable. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022064

[17]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[18]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[19]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[20]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (157)
  • HTML views (83)
  • Cited by (1)

Other articles
by authors

[Back to Top]