\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Magnus-type integrator for non-autonomous SPDEs driven by multiplicative noise

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • This paper aims to investigate numerical approximation of a general second order non-autonomous semilinear parabolic stochastic partial differential equation (SPDE) driven by multiplicative noise. Numerical approximations of autonomous SPDEs are thoroughly investigated in the literature, while the non-autonomous case is not yet understood. We discretize the non-autonomous SPDE by the finite element method in space and the Magnus-type integrator in time. We provide a strong convergence proof of the fully discrete scheme toward the mild solution in the root-mean-square $ L^2 $ norm. The result reveals how the convergence orders in both space and time depend on the regularity of the noise and the initial data. In particular, for multiplicative trace class noise we achieve convergence order $ \mathcal{O}\left(h^2\left(1+\max(0, \ln\left(t_m/h^2\right)\right)\right. \left.+\Delta t^{\frac{1}{2}}\right) $. Numerical simulations to illustrate our theoretical finding are provided.

    Mathematics Subject Classification: Primary: 65C30, 65J08, 65M60, 65M12, 65M15; Secondary: 65J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Convergence of the Magnus integrator for $ \beta = 1 $, and $ \beta = 2 $ in (154). The order of convergence in time is $ 0.57 $ for $ \beta = 1 $, $ 0.54 $ for $ \beta = 2 $. The total number of samples used is $ 100 $

  • [1] S. BlanesF. CasasJ. A. Oteo and J. Ros, The Magnus expansion and some of its applications, Phys. Rep., 470 (2009), 151-238.  doi: 10.1016/j.physrep.2008.11.001.
    [2] S. BlanesF. CasasJ. A. Oteo and J. Ros, Magnus and Fer expansion for matrix differential equations: The convergence problem, J. Phys. A., 31 (1998), 259-268.  doi: 10.1088/0305-4470/31/1/023.
    [3] S. Blanes and P. C. Moan, Fourth- and sixth-order commutator-free Magnus integrators for linear and non-linear dynamical systems, Appl. Numer. Math., 56 (2006), 1519-1537.  doi: 10.1016/j.apnum.2005.11.004.
    [4] H. Fujita and T. Suzuki, Evolutions problems, in Handbook of Numerical Analysis, Handb. Numer. Anal., 2, North-Holland, Amsterdam, 1991,789–928. doi: Evolutionproblems.
    [5] C. GonzálezA. Ostermann and M. Thalhmmer, A second-order Magnus-type integrator for nonautonomous parabolic problems, J. Comput. Appl. Math., 189 (2006), 142-156.  doi: 10.1016/j.cam.2005.04.036.
    [6] C. González and A. Ostermann, Optimal convergence results for Runge-Kutta discretizations of linear nonautonomous parabolic problems, BIT, 39 (1999), 79-95.  doi: 10.1023/A:1022369208270.
    [7] E. Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal., 18 (2003), 141-186.  doi: 10.1023/A:1020552804087.
    [8] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089647.
    [9] D. HippM. Hochbruck and A. Ostermann, An exponential integrator for non-autonomous parabolic problems, Electron. Trans. Numer. Anal., 41 (2014), 497-511. 
    [10] M. Hochbruck and C. Lubich, On Magnus integrators for time-dependent Schrödinger equations, SIAM. J. Numer. Anal., 41 (2003), 945-963.  doi: 10.1137/S0036142902403875.
    [11] A. JentzenP. Kloeden and G. Winkel, Efficient simulation of nonlinear parabolic SPDEs with additive noise, Ann. Appl. Probab., 21 (2011), 908-950.  doi: 10.1214/10-AAP711.
    [12] A. Jentzen and M. Röckner, Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace class noise, J. Differential Equations, 252 (2012), 114-136.  doi: 10.1016/j.jde.2011.08.050.
    [13] M. KovácsS. Larsson and F. Lindgren, Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise, Numer. Algorithms, 53 (2010), 309-220.  doi: 10.1007/s11075-009-9281-4.
    [14] R. Kruse, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34 (2014), 217-251.  doi: 10.1093/imanum/drs055.
    [15] S. Larsson, Nonsmooth data error estimates with applications to the study of the long-time behavior of the finite elements solutions of semilinear parabolic problems, Chalmers University of Technology, 1992. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.1250
    [16] G. J. Lord and A. Tambue, Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise, IMA J. Numer. Anal., 33 (2012), 515-543.  doi: 10.1093/imanum/drr059.
    [17] G. J. Lord and A. Tambue, A modified semi-implict Euler-Maruyama scheme for finite element discretization of SPDEs with additive noise, Appl. Math. Comput., 332 (2018), 105-122.  doi: 10.1016/j.amc.2018.03.014.
    [18] Y. Y. Lu, A fourth-order Magnus scheme for Helmholtz equation, J. Compt. Appl. Math., 173 (2005), 247-253.  doi: 10.1016/j.cam.2004.03.010.
    [19] M. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), 649-673.  doi: 10.1002/cpa.3160070404.
    [20] J. D. Mukam and A. Tambue, Strong convergence analysis of the stochastic exponential Rosenbrock scheme for the finite element discretization of semilinear SPDEs driven by multiplicative and additive noise, J. Sci. Comput., 74 (2018), 937-978.  doi: 10.1007/s10915-017-0475-y.
    [21] A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [22] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223.
    [23] C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 1905, Springer, Berlin, 2007. doi: 10.1007/978-3-540-70781-3.
    [24] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Texts in Applied Mathematics, 13, Springer-Verlag, New York, 1993.
    [25] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited. I, Math. Bohem., 118 (1993), 67-106. 
    [26] A. Tambue and J. D. Mukam, Convergence analysis of the Magnus-Rosenbrock type method for the finite element discretization of semilinear non autonomous parabolic PDE with nonsmooth initial data, preprint, arXiv: 1809.03227v1.
    [27] X. Wang, Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise, IMA J. Numer. Anal., 37 (2017), 965-984.  doi: 10.1093/imanum/drw016.
    [28] X. Wang and Q. Ruisheng, A note on an accelerated exponential Euler method for parabolic SPDEs with additive noise, Appl. Math. Lett., 46 (2015), 31-37.  doi: 10.1016/j.aml.2015.02.001.
    [29] Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal., 43 (2005), 1363-1384.  doi: 10.1137/040605278.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(2876) PDF downloads(305) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return