In this work we study the Ruelle Operator associated to a continuous potential defined on a countable product of a compact metric space. We prove a generalization of Bowen's criterion for the uniqueness of the eigenmeasures and that one-sided one-dimensional DLR-Gibbs measures associated to a continuous translation invariant specifications are eigenmeasures of the transpose of the Ruelle operator. From the last claim one gets that for a continuous potential the concept of eigenprobability for the transpose of the Ruelle operator is equivalent to the concept of DLR probability.
Bounded extensions of the Ruelle operator to the Lebesgue space of integrable functions, with respect to the eigenmeasures, are studied and the problem of existence of maximal positive eigenfunctions for them is considered. One of our main results in this direction is the existence of such positive eigenfunctions for Bowen's potential in the setting of a compact and metric alphabet. We also present a version of Dobrushin's Theorem in the setting of Thermodynamic Formalism.
Citation: |
[1] |
J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, 50, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/surv/050.![]() ![]() ![]() |
[2] |
J. Aaronson, M. Denker and M. Urbanski, Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993) 495–548.
doi: 10.1090/S0002-9947-1993-1107025-2.![]() ![]() ![]() |
[3] |
M. Aizenman and B. Simon, A comparison of plane rotor and Ising models, Phys. Lett. A, 76 (1980), 281-282.
doi: 10.1016/0375-9601(80)90493-4.![]() ![]() ![]() |
[4] |
V. Baladi, Positive Transfer Operators and Decay of Correlations, Advanced Series in Nonlinear Dynamics, 16, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
doi: 10.1142/9789812813633.![]() ![]() ![]() |
[5] |
A. T. Baraviera, L. M. Cioletti, A. O. Lopes, J. Mohr and R. R. Souza, On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.
doi: 10.1142/S0129055X11004527.![]() ![]() ![]() |
[6] |
S. Berghout, R. Fernández and E. Verbitskiy, On the relation between Gibbs and $g$ -measures, Ergodic Theory Dynam. Systems, 39 (2019), 3224-3249.
doi: 10.1017/etds.2018.13.![]() ![]() ![]() |
[7] |
T. Bousch, La condition de Walters, Ann. Sci. École Norm. Sup. (4), 34 (2001), 287–311.
doi: 10.1016/S0012-9593(00)01062-4.![]() ![]() ![]() |
[8] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-77695-6.![]() ![]() ![]() |
[9] |
L. Cioletti, M. Denker, A. O. Lopes and M. Stadlbauer, Spectral properties of the Ruelle
operator for product-type potentials on shift spaces, J. Lond. Math. Soc. (2), 95 (2017),
684–704.
doi: 10.1112/jlms.12031.![]() ![]() ![]() |
[10] |
L. Cioletti and A. O. Lopes, Phase transitions in one-dimensional translation invariant systems: A Ruelle operator approach, J. Stat. Phys., 159 (2015), 1424-1455.
doi: 10.1007/s10955-015-1202-4.![]() ![]() ![]() |
[11] |
L. Cioletti and A. O. Lopes, Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice, Discrete Contin. Dyn. Syst., 37 (2017), 6139-6152.
doi: 10.3934/dcds.2017264.![]() ![]() ![]() |
[12] |
L. Cioletti and E. A. Silva, Spectral properties of the Ruelle operator on the Walters class over compact spaces, Nonlinearity, 29 (2016), 2253-2278.
doi: 10.1088/0951-7715/29/8/2253.![]() ![]() ![]() |
[13] |
L. Cioletti, E. A. Silva and M. Stadlbauer, Thermodynamic formalism for topological Markov chains on standard Borel spaces, Discrete Contin. Dyn. Syst., 39 (2019), 6277-6298.
doi: 10.3934/dcds.2019274.![]() ![]() ![]() |
[14] |
M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts, Discrete Contin. Dyn. Syst., 22 (2008), 131-164.
doi: 10.3934/dcds.2008.22.131.![]() ![]() ![]() |
[15] |
M. Denker and M. Urbanski, On the existence of conformal measures, Trans. Amer. Math. Soc., 328 (1991), 563-587.
doi: 10.1090/S0002-9947-1991-1014246-4.![]() ![]() ![]() |
[16] |
R. Fernández, S. Gallo and G. Maillard, Regular $C$-measures are not always Gibbsian, Electron. Commun. Probab., 16 (2011), 732-740.
doi: 10.1214/ECP.v16-1681.![]() ![]() ![]() |
[17] |
H.-O. Georgii, Gibbs Measures and Phase Transitions, De Gruyter Studies in Mathematics, 9, Walter de Gruyter & Co., Berlin, 2011.
doi: 10.1515/9783110250329.![]() ![]() ![]() |
[18] |
J. Ginibre, General formulation of Griffiths' inequalities, Comm. Math. Phys., 16 (1970), 310-328.
doi: 10.1007/BF01646537.![]() ![]() ![]() |
[19] |
J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4728-9.![]() ![]() ![]() |
[20] |
R. B. Griffiths, Correlations in Ising ferromagnets, J. Math. Phys., 8 (1967), 478-483.
doi: 10.1063/1.1705219.![]() ![]() |
[21] |
R. B. Griffiths, Correlations in Ising ferromagnets. III. A mean-field bound for binary correlations, Comm. Math. Phys., 6 (1967) 121–127.
doi: 10.1007/BF01654128.![]() ![]() ![]() |
[22] |
M. Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 231-242.
doi: 10.1007/BF00534111.![]() ![]() ![]() |
[23] |
A. O. Lopes, J. K. Mengue, J. Mohr and R. R. Souza, Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: Positive and zero temperature, Ergodic Theory Dynam. Systems, 35 (2015), 1925-1961.
doi: 10.1017/etds.2014.15.![]() ![]() ![]() |
[24] |
R. Mañé, The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.), 20 (1990), 1-24.
doi: 10.1007/BF02585431.![]() ![]() ![]() |
[25] |
S. Muir and M. Urbański, Thermodynamic formalism for a modified shift map, Stoch. Dyn., 14 (2014), 38pp.
doi: 10.1142/S0219493713500202.![]() ![]() ![]() |
[26] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188 (1990), 268pp.
![]() ![]() |
[27] |
D. Ruelle, A variational formulation of equilibrium statistical mechanics and the {G}ibbs phase rule, Comm. Math. Phys., 5 (1967), 324-329.
doi: 10.1007/BF01646446.![]() ![]() ![]() |
[28] |
D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9 (1968), 267-278.
doi: 10.1007/BF01654281.![]() ![]() ![]() |
[29] |
D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math. Phys., 125 (1989), 239-262.
doi: 10.1007/BF01217908.![]() ![]() ![]() |
[30] |
O. Sarig, Thermodynamic formalism for countable Markov shifts, in Hyperbolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math., 89, Amer. Math. Soc., Providence, RI, 2015, 81–117.
![]() ![]() |
[31] |
J. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), 21-64.
doi: 10.1070/RM1972v027n04ABEH001383.![]() ![]() ![]() |
[32] |
H. E. Stanley, Dependence of critical properties on dimensionality of spins, Phys. Rev. Lett., 20 (1968), 589-592.
doi: 10.1103/PhysRevLett.20.589.![]() ![]() |
[33] |
A. C. D. van Enter, R. Fernández and A. D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Statist. Phys., 72 (1993), 879-1167.
doi: 10.1007/BF01048183.![]() ![]() ![]() |
[34] |
P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math., 97 (1975), 937-971.
doi: 10.2307/2373682.![]() ![]() ![]() |
[35] |
P. Walters, Invariant measures and equilibrium states for some mappings which expand distances, Trans. Amer. Math. Soc., 236 (1978), 121-153.
doi: 10.1090/S0002-9947-1978-0466493-1.![]() ![]() ![]() |
[36] |
P. Walters, Convergence of the Ruelle operator for a function satisfying Bowen's condition, Trans. Amer. Math. Soc., 353 (2001), 327-347.
doi: 10.1090/S0002-9947-00-02656-8.![]() ![]() ![]() |
[37] |
P. Walters, A natural space of functions for the Ruelle operator theorem, Ergodic Theory Dynam. Systems, 27 (2007), 1323-1348.
doi: 10.1017/S0143385707000028.![]() ![]() ![]() |