In this work we deal with dynamically coherent partially hyperbolic diffeomorphisms whose central direction is two dimensional. We prove that in general the accessibility classes are topologically immersed manifolds. If, furthermore, the diffeomorphism satisfies certain bunching condition, then the accessibility classes are immersed $ C^{1} $-manifolds.
Citation: |
[1] |
A. Avila and M. Viana, Stable accessibility with 2-dimensional center, Astérisque, 416 (2020), 299-318.
![]() |
[2] |
M. I. Brin and J. B. Pesin, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.
doi: 10.1070/IM1974v008n01ABEH002101.![]() ![]() ![]() |
[3] |
A. Brown, Smoothness of stable holonomies inside center-stable manifolds and the $C^{2}$ hypothesis in Pugh-Shub and Ledrappier-Young theory, preprint, arXiv: 1608.05886.
![]() |
[4] |
K. Burns, F. R. Hertz, M. A. R Hertz, A. Talitskaya and R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center, Discrete Contin. Dyn. Syst., 22 (2008), 75-88.
doi: 10.3934/dcds.2008.22.75.![]() ![]() ![]() |
[5] |
P. Didier, Stability of accessibility, Ergodic Theory Dynam. Systems, 23 (2003), 1717-1731.
doi: 10.1017/S0143385702001785.![]() ![]() ![]() |
[6] |
D. Dolgopyat and A. Wilkinson, Stable accessibility is $C^1$ dense. Geometric methods in dynamics. Ⅱ, Astérisque, 287 (2003), 33-60.
![]() ![]() |
[7] |
M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/BFb0092042.![]() ![]() ![]() |
[8] |
V. Horita and M. Sambarino, Stable ergodicity and accessibility for certain partially hyperbolic diffeomorphisms with bidimensional center leaves, Comment. Math. Helv., 92 (2017), 467-512.
doi: 10.4171/CMH/417.![]() ![]() ![]() |
[9] |
J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, 4 (1988), 187-193.
doi: 10.4171/RMI/69.![]() ![]() ![]() |
[10] |
A. Katok and V. Niţică, Rigidity in Higher Rank Abelian Group Actions. Volume I. Introduction and Cocycle Problem, Cambridge Tracts in Mathematics, 185, Cambridge University
Press, Cambridge, 2011.
doi: 10.1017/CBO9780511803550.![]() ![]() ![]() |
[11] |
C. Pugh and M. Shub, Stable Ergodicity and Partial Hyperbolicity, in International Conference on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996,182–187.
![]() ![]() |
[12] |
C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, J. Eur. Math. Soc. (JEMS), 2 (2000), 1-52.
doi: 10.1007/s100970050013.![]() ![]() ![]() |
[13] |
C. Pugh, M. Shub and A. Wilkinson, Hölder foliations, Duke Math. J., 86 (1997), 517-546.
doi: 10.1215/S0012-7094-97-08616-6.![]() ![]() ![]() |
[14] |
D. Repovš, A. B. Skopenkov and E. V. Ščepin, $C^1$-homogeneous compacta in $\Bbb{R}^n$ are $C^1$-submanifolds of $\Bbb{R}^n$, Proc. Amer. Math. Soc., 124 (1996), 1219-1226.
doi: 10.1090/S0002-9939-96-03157-7.![]() ![]() ![]() |
[15] |
F. Rodriguez Hertz, Stable ergodicity of certain linear automorphisms of the torus, Ann. of
Math. (2), 162 (2005), 65–107.
doi: 10.4007/annals.2005.162.65.![]() ![]() ![]() |
[16] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math., 172 (2008), 353-381.
doi: 10.1007/s00222-007-0100-z.![]() ![]() ![]() |
[17] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. Ures, A non-dynamically coherent example on $\Bbb{T}^3$, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1023-1032.
doi: 10.1016/j.anihpc.2015.03.003.![]() ![]() ![]() |
[18] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz and R. A. Ures, A survey of partially hyperbolic dynamics, in Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, Fields Inst. Commun., 51, Amer. Math. Soc., Providence, RI, 2007, 35–87.
![]() ![]() |
[19] |
A. Wilkinson, The cohomological equation for partially hyperbolic diffeomorphisms, Astérisque, 358 (2013), 75-165.
![]() ![]() |
A simple triod in