-
Previous Article
Existence of periodic waves for a perturbed quintic BBM equation
- DCDS Home
- This Issue
-
Next Article
Structure of accessibility classes
Fluctuations of ergodic sums on periodic orbits under specification
1. | Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA |
2. | Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-909, Brazil |
3. | Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil |
We study the fluctuations of ergodic sums using global and local specifications on periodic points. We obtain Lindeberg-type central limit theorems in both situations. As an application, when the system possesses a unique measure of maximal entropy, we show weak convergence of ergodic sums to a mixture of normal distributions. Our results suggest decomposing the variances of ergodic sums according to global and local sources.
References:
[1] |
J. Aaronson and M. Denker,
Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stoch. Dyn., 1 (2001), 193-237.
doi: 10.1142/S0219493701000114. |
[2] |
J. Aaronson, M. Denker and M. Urbański,
Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc., 337 (1993), 495-548.
doi: 10.1090/S0002-9947-1993-1107025-2. |
[3] |
R. Bowen,
Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452. |
[4] |
R. Bowen,
Some systems with unique equilibrium states, Math. Systems Theory, 8 (1974/75), 193-202.
doi: 10.1007/BF01762666. |
[5] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.
doi: 10.1007/BFb0081279. |
[6] |
R. C. Bradley, Introduction to Strong Mixing Conditions, Kendrick Press, Heber City, UT,
2007. |
[7] |
R. Burton and M. Denker,
On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc., 302 (1987), 715-726.
doi: 10.1090/S0002-9947-1987-0891642-6. |
[8] |
M. Denker, The central limit theorem for dynamical systems, in Dynamical Systems and Ergodic Theory, Banach Center Publ., 23, PWN, Warsaw, 1989, 33–62. |
[9] |
M. Denker, J. Duan and M. McCourt,
Pseudorandom numbers for conformal measures, Dyn. Syst., 24 (2009), 439-457.
doi: 10.1080/14689360903002019. |
[10] |
M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin-New York, 1976.
doi: 10.1007/BFb0082364. |
[11] |
M. Denker and G. Keller,
On $U$-statistics and v. Mises' statistics for weakly dependent processes, Z. Wahrsch. Verw. Gebiete, 64 (1983), 505-522.
doi: 10.1007/BF00534953. |
[12] |
M. Denker, S. Senti and X. Zhang,
The Lindeberg theorem for Gibbs-Markov dynamics, Nonlinearity, 30 (2017), 4587-4613.
doi: 10.1088/1361-6544/aa8ca2. |
[13] |
P. Doukhan, Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2642-0. |
[14] |
M. Gordin,
The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, 188 (1969), 739-741.
|
[15] |
S. Gouëzel,
Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields, 128 (2004), 82-122.
doi: 10.1007/s00440-003-0300-4. |
[16] |
S. Gouëzel and I. Melbourne, Moment bounds and concentration inequalities for slowly mixing dynamical systems, Electron. J. Probab., 19 (2014), 30pp.
doi: 10.1214/EJP.v19-3427. |
[17] |
B. Hasselblatt, Introduction to hyperbolic dynamics and ergodic theory, in Ergodic Theory and Negative Curvature, Lecture Notes in Math, 2164, Springer, Cham, 2017, 1–124.
doi: 10.1007/978-3-319-43059-1_1. |
[18] |
N. Haydn, M. Nicol, S. Vaienti and L. Zhang,
Central limit theorems for the shrinking target problem, J. Stat. Phys., 153 (2013), 864-887.
doi: 10.1007/s10955-013-0860-3. |
[19] |
H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b87874. |
[20] |
I. A. Ibragimov and Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971,473pp. |
[21] |
A. Klenke, Probability Theory, Universitext, Springer, London, 2014.
doi: 10.1007/978-1-4471-5361-0. |
[22] |
D. Kwietniak, M. Łącka and P. Oprocha, A panorama of specification-like properties and their consequences, in Dynamics and Numbers, Contemp. Math., 669, Amer. Math. Soc., Providence, RI, 2016,155–186.
doi: 10.1090/conm/669/13428. |
[23] |
C. Liverani, Central limit theorem for deterministic systems, in International Conference on Dynamical Systems), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996, 56–75. |
[24] |
R. Mañé,
On the Bernoulli property for rational maps, Ergodic Theory Dynam. Systems, 5 (1985), 71-88.
doi: 10.1017/S0143385700002765. |
[25] |
V. V. Petrov, Sums of Independent Random Variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, 82, Springer-Verlag, New York-Heidelberg, 1975.
doi: 10.1007/978-3-642-65809-9. |
[26] |
J. Rousseau-Egele,
Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab., 11 (1983), 772-788.
doi: 10.1214/aop/1176993522. |
[27] |
D. Ruelle,
Thermodynamic formalism for maps satisfying positive expansiveness and specification, Nonlinearity, 5 (1992), 1223-1236.
doi: 10.1088/0951-7715/5/6/002. |
[28] |
K. Sigmund,
Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.
doi: 10.1007/BF01404606. |
[29] |
D. Thomine,
A generalized central limit theorem in infinite ergodic theory, Probab. Theory Related Fields, 158 (2014), 597-636.
doi: 10.1007/s00440-013-0491-2. |
[30] |
D. Thomine,
Variations on a central limit theorem in infinite ergodic theory, Ergodic Theory Dynam. Systems, 35 (2015), 1610-1657.
doi: 10.1017/etds.2013.114. |
show all references
References:
[1] |
J. Aaronson and M. Denker,
Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stoch. Dyn., 1 (2001), 193-237.
doi: 10.1142/S0219493701000114. |
[2] |
J. Aaronson, M. Denker and M. Urbański,
Ergodic theory for Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc., 337 (1993), 495-548.
doi: 10.1090/S0002-9947-1993-1107025-2. |
[3] |
R. Bowen,
Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc., 154 (1971), 377-397.
doi: 10.2307/1995452. |
[4] |
R. Bowen,
Some systems with unique equilibrium states, Math. Systems Theory, 8 (1974/75), 193-202.
doi: 10.1007/BF01762666. |
[5] |
R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, 470, Springer-Verlag, Berlin-New York, 1975.
doi: 10.1007/BFb0081279. |
[6] |
R. C. Bradley, Introduction to Strong Mixing Conditions, Kendrick Press, Heber City, UT,
2007. |
[7] |
R. Burton and M. Denker,
On the central limit theorem for dynamical systems, Trans. Amer. Math. Soc., 302 (1987), 715-726.
doi: 10.1090/S0002-9947-1987-0891642-6. |
[8] |
M. Denker, The central limit theorem for dynamical systems, in Dynamical Systems and Ergodic Theory, Banach Center Publ., 23, PWN, Warsaw, 1989, 33–62. |
[9] |
M. Denker, J. Duan and M. McCourt,
Pseudorandom numbers for conformal measures, Dyn. Syst., 24 (2009), 439-457.
doi: 10.1080/14689360903002019. |
[10] |
M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Mathematics, 527, Springer-Verlag, Berlin-New York, 1976.
doi: 10.1007/BFb0082364. |
[11] |
M. Denker and G. Keller,
On $U$-statistics and v. Mises' statistics for weakly dependent processes, Z. Wahrsch. Verw. Gebiete, 64 (1983), 505-522.
doi: 10.1007/BF00534953. |
[12] |
M. Denker, S. Senti and X. Zhang,
The Lindeberg theorem for Gibbs-Markov dynamics, Nonlinearity, 30 (2017), 4587-4613.
doi: 10.1088/1361-6544/aa8ca2. |
[13] |
P. Doukhan, Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2642-0. |
[14] |
M. Gordin,
The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR, 188 (1969), 739-741.
|
[15] |
S. Gouëzel,
Central limit theorem and stable laws for intermittent maps, Probab. Theory Related Fields, 128 (2004), 82-122.
doi: 10.1007/s00440-003-0300-4. |
[16] |
S. Gouëzel and I. Melbourne, Moment bounds and concentration inequalities for slowly mixing dynamical systems, Electron. J. Probab., 19 (2014), 30pp.
doi: 10.1214/EJP.v19-3427. |
[17] |
B. Hasselblatt, Introduction to hyperbolic dynamics and ergodic theory, in Ergodic Theory and Negative Curvature, Lecture Notes in Math, 2164, Springer, Cham, 2017, 1–124.
doi: 10.1007/978-3-319-43059-1_1. |
[18] |
N. Haydn, M. Nicol, S. Vaienti and L. Zhang,
Central limit theorems for the shrinking target problem, J. Stat. Phys., 153 (2013), 864-887.
doi: 10.1007/s10955-013-0860-3. |
[19] |
H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness, Lecture Notes in Mathematics, 1766, Springer-Verlag, Berlin, 2001.
doi: 10.1007/b87874. |
[20] |
I. A. Ibragimov and Y. V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971,473pp. |
[21] |
A. Klenke, Probability Theory, Universitext, Springer, London, 2014.
doi: 10.1007/978-1-4471-5361-0. |
[22] |
D. Kwietniak, M. Łącka and P. Oprocha, A panorama of specification-like properties and their consequences, in Dynamics and Numbers, Contemp. Math., 669, Amer. Math. Soc., Providence, RI, 2016,155–186.
doi: 10.1090/conm/669/13428. |
[23] |
C. Liverani, Central limit theorem for deterministic systems, in International Conference on Dynamical Systems), Pitman Res. Notes Math. Ser., 362, Longman, Harlow, 1996, 56–75. |
[24] |
R. Mañé,
On the Bernoulli property for rational maps, Ergodic Theory Dynam. Systems, 5 (1985), 71-88.
doi: 10.1017/S0143385700002765. |
[25] |
V. V. Petrov, Sums of Independent Random Variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, 82, Springer-Verlag, New York-Heidelberg, 1975.
doi: 10.1007/978-3-642-65809-9. |
[26] |
J. Rousseau-Egele,
Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux, Ann. Probab., 11 (1983), 772-788.
doi: 10.1214/aop/1176993522. |
[27] |
D. Ruelle,
Thermodynamic formalism for maps satisfying positive expansiveness and specification, Nonlinearity, 5 (1992), 1223-1236.
doi: 10.1088/0951-7715/5/6/002. |
[28] |
K. Sigmund,
Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math., 11 (1970), 99-109.
doi: 10.1007/BF01404606. |
[29] |
D. Thomine,
A generalized central limit theorem in infinite ergodic theory, Probab. Theory Related Fields, 158 (2014), 597-636.
doi: 10.1007/s00440-013-0491-2. |
[30] |
D. Thomine,
Variations on a central limit theorem in infinite ergodic theory, Ergodic Theory Dynam. Systems, 35 (2015), 1610-1657.
doi: 10.1017/etds.2013.114. |
[1] |
Xue Meng, Miaomiao Gao, Feng Hu. New proofs of Khinchin's law of large numbers and Lindeberg's central limit theorem –PDE's approach. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022017 |
[2] |
Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477 |
[3] |
Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192 |
[4] |
Jean-Pierre Conze, Stéphane Le Borgne, Mikaël Roger. Central limit theorem for stationary products of toral automorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1597-1626. doi: 10.3934/dcds.2012.32.1597 |
[5] |
James Nolen. A central limit theorem for pulled fronts in a random medium. Networks and Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167 |
[6] |
Manfred G. Madritsch, Izabela Petrykiewicz. Non-normal numbers in dynamical systems fulfilling the specification property. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4751-4764. doi: 10.3934/dcds.2014.34.4751 |
[7] |
Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 |
[8] |
Shige Peng. Law of large numbers and central limit theorem under nonlinear expectations. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 4-. doi: 10.1186/s41546-019-0038-2 |
[9] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[10] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082 |
[11] |
Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160 |
[12] |
Yves Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the "central limit theorem''. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 143-158. doi: 10.3934/dcds.2006.15.143 |
[13] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[14] |
Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469 |
[15] |
Michael Björklund, Alexander Gorodnik. Central limit theorems in the geometry of numbers. Electronic Research Announcements, 2017, 24: 110-122. doi: 10.3934/era.2017.24.012 |
[16] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit. The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6529-6546. doi: 10.3934/dcds.2020289 |
[17] |
Richard Miles, Michael Björklund. Entropy range problems and actions of locally normal groups. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 981-989. doi: 10.3934/dcds.2009.25.981 |
[18] |
Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005 |
[19] |
Todd Young. Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 359-378. doi: 10.3934/dcds.2003.9.359 |
[20] |
Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 427-440. doi: 10.3934/dcdss.2021083 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]