August  2020, 40(8): 4705-4765. doi: 10.3934/dcds.2020199

Representation formula for symmetrical symplectic capacity and applications

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China

* Corresponding author: Guangcun Lu

Received  June 2019 Revised  February 2020 Published  May 2020

Fund Project: The second author is partially supported by the NNSF 11271044 of China

This is the second installment in a series of papers aimed at generalizing symplectic capacities and homologies. We study symmetric versions of symplectic capacities for real symplectic manifolds, and obtain corresponding results for them to those of the first [19] of this series (such as representation formula, a theorem by Evgeni Neduv, Brunn-Minkowski type inequality and Minkowski billiard trajectories proposed by Artstein-Avidan-Ostrover).

Citation: Rongrong Jin, Guangcun Lu. Representation formula for symmetrical symplectic capacity and applications. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4705-4765. doi: 10.3934/dcds.2020199
References:
[1]

P. Albers and U. Frauenfelder, The space of linear anti-symplectic involutions is a homogenous space, Arch. Math. (Basel), 99 (2012), 531-536.  doi: 10.1007/s00013-012-0461-4.

[2]

S. Artstein-AvidanR. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.  doi: 10.1215/00127094-2794999.

[3]

S. Artstein-Avidan and Y. Ostrover, A Brunn-Minkowski inequality for symplectic capacities of convex domains, Int. Math. Res. Not. IMRN 2008, (2008), Art. ID rnn044, 31 pp. doi: 10.1093/imrn/rnn044.

[4]

S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Math. Res. Not. IMRN 2014, (2014), 165–193. doi: 10.1093/imrn/rns216.

[5]

S. M. Bates, Some simple continuity properties of symplectic capacities, The Floer Memorial Volume, Progr. Math., Birkhäuser, Basel, 133 (1995), 185-193. 

[6]

S. M. Bates, A capacity representation theorem for some non-convex domains, Math. Z., 227 (1998), 571-581.  doi: 10.1007/PL00004394.

[7]

J. Blot, On the almost everywhere continuity, http://arXiv.org/abs/1411.3582v1[math.OC].

[8]

J. BourgainJ. Lindenstrauss and V. D. Milman, Minkowski sums and symmetrizations, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., Springer, Berlin, 1317 (1988), 44-66.  doi: 10.1007/BFb0081735.

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equation, Universitext. Springer, New York, 2011.

[10]

F. H. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc., 76 (1979), 186-188.  doi: 10.2307/2042942.

[11]

F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[12]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und Ihrer Grenzgebiete (3), 19. Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[13]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.  doi: 10.1007/BF01215653.

[14]

A. FigalliJ. Palmer and Á. Pelayo, Symplectic $G$-capacities and integrable systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 65-103. 

[15]

M. Ghomi, Shortest periodic billiard trajectories in convex bodies, Geometric and Functional Analysis, 14 (2004), 295-302.  doi: 10.1007/s00039-004-0458-7.

[16]

H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis et Cetera, Academic Press, Boston, MA, (1990), 405–427.

[17]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbúcher., Birkhäuser Verlag, Basel, 1994.

[18]

K. Irie, Periodic billiard trajectories and Morse theory on loop spaces, Comment. Math. Helv., 90 (2015), 225-254.  doi: 10.4171/CMH/352.

[19]

R. R. Jin and G. C. Lu, Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications, (2019), arXiv: 1903.01116v2[math.SG].

[20]

S. G. Krantz, Convex Analysis, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015.

[21]

A. F. Künzle, Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, Banach Center Publications, Polish Acad. Sci. Inst. Math., Warsaw, 33 (1996), 171-187. 

[22]

S. Lisi and A. Rieser, Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings, arXiv: 1312.7334[math.SG].

[23]

C. G. Liu and Q. Wang, Symmetrical symplectic capacity with applications, Discrete Contin. Dyn. Syst., 32 (2012), 2253-2270.  doi: 10.3934/dcds.2012.32.2253.

[24]

J. Moser and E. J. Zehnder, Notes on Dynamical Systems, Courant Lecture Notes in Mathematics, 12. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/cln/012.

[25]

E. Neduv, Prescribed minimal period problems for convex Hamiltonian systems via Hofer-Zehnder symplectic capacity, Math. Z., 236 (2001), 99-112.  doi: 10.1007/PL00004828.

[26]

R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.  doi: 10.1007/BF01941322.

[27]

A. Rieser, Lagrangian blow-ups, blow-downs, and applications to real packing, Journal of Symplectic Geometry, 12 (2014), 725-789.  doi: 10.4310/JSG.2014.v12.n4.a4.

[28]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970.

[29]

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511526282.

[30]

R. Schneider, Stability for some extremal properties of the simplex, Journal of Geometry, 96 (2009), 135-148.  doi: 10.1007/s00022-010-0028-0.

[31]

J.-C. Sikorav, Systémes Hamiltoniens et Topologie Symplectique, Dipartimento di Matematica dell'Universitá di Pisa, 1990.

[32]

C. Viterbo, Symplectic real algebraic geometry, preprint, (1999).

[33] Y. C. Xu, Linear Algebra and Matrix Theory, Higher Education Press, Beijing, 1992. 
[34]

F. C. Yang and Z. Wei, Generalized Euler identity for subdifferentials of homogeneous functions and applications, J. Math. Anal. Appl., 337 (2008), 516-523.  doi: 10.1016/j.jmaa.2007.04.008.

show all references

References:
[1]

P. Albers and U. Frauenfelder, The space of linear anti-symplectic involutions is a homogenous space, Arch. Math. (Basel), 99 (2012), 531-536.  doi: 10.1007/s00013-012-0461-4.

[2]

S. Artstein-AvidanR. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.  doi: 10.1215/00127094-2794999.

[3]

S. Artstein-Avidan and Y. Ostrover, A Brunn-Minkowski inequality for symplectic capacities of convex domains, Int. Math. Res. Not. IMRN 2008, (2008), Art. ID rnn044, 31 pp. doi: 10.1093/imrn/rnn044.

[4]

S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Math. Res. Not. IMRN 2014, (2014), 165–193. doi: 10.1093/imrn/rns216.

[5]

S. M. Bates, Some simple continuity properties of symplectic capacities, The Floer Memorial Volume, Progr. Math., Birkhäuser, Basel, 133 (1995), 185-193. 

[6]

S. M. Bates, A capacity representation theorem for some non-convex domains, Math. Z., 227 (1998), 571-581.  doi: 10.1007/PL00004394.

[7]

J. Blot, On the almost everywhere continuity, http://arXiv.org/abs/1411.3582v1[math.OC].

[8]

J. BourgainJ. Lindenstrauss and V. D. Milman, Minkowski sums and symmetrizations, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., Springer, Berlin, 1317 (1988), 44-66.  doi: 10.1007/BFb0081735.

[9]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equation, Universitext. Springer, New York, 2011.

[10]

F. H. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc., 76 (1979), 186-188.  doi: 10.2307/2042942.

[11]

F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[12]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und Ihrer Grenzgebiete (3), 19. Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-642-74331-3.

[13]

I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.  doi: 10.1007/BF01215653.

[14]

A. FigalliJ. Palmer and Á. Pelayo, Symplectic $G$-capacities and integrable systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 65-103. 

[15]

M. Ghomi, Shortest periodic billiard trajectories in convex bodies, Geometric and Functional Analysis, 14 (2004), 295-302.  doi: 10.1007/s00039-004-0458-7.

[16]

H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis et Cetera, Academic Press, Boston, MA, (1990), 405–427.

[17]

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbúcher., Birkhäuser Verlag, Basel, 1994.

[18]

K. Irie, Periodic billiard trajectories and Morse theory on loop spaces, Comment. Math. Helv., 90 (2015), 225-254.  doi: 10.4171/CMH/352.

[19]

R. R. Jin and G. C. Lu, Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications, (2019), arXiv: 1903.01116v2[math.SG].

[20]

S. G. Krantz, Convex Analysis, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015.

[21]

A. F. Künzle, Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, Banach Center Publications, Polish Acad. Sci. Inst. Math., Warsaw, 33 (1996), 171-187. 

[22]

S. Lisi and A. Rieser, Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings, arXiv: 1312.7334[math.SG].

[23]

C. G. Liu and Q. Wang, Symmetrical symplectic capacity with applications, Discrete Contin. Dyn. Syst., 32 (2012), 2253-2270.  doi: 10.3934/dcds.2012.32.2253.

[24]

J. Moser and E. J. Zehnder, Notes on Dynamical Systems, Courant Lecture Notes in Mathematics, 12. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2005. doi: 10.1090/cln/012.

[25]

E. Neduv, Prescribed minimal period problems for convex Hamiltonian systems via Hofer-Zehnder symplectic capacity, Math. Z., 236 (2001), 99-112.  doi: 10.1007/PL00004828.

[26]

R. S. Palais, The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.  doi: 10.1007/BF01941322.

[27]

A. Rieser, Lagrangian blow-ups, blow-downs, and applications to real packing, Journal of Symplectic Geometry, 12 (2014), 725-789.  doi: 10.4310/JSG.2014.v12.n4.a4.

[28]

R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970.

[29]

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993. doi: 10.1017/CBO9780511526282.

[30]

R. Schneider, Stability for some extremal properties of the simplex, Journal of Geometry, 96 (2009), 135-148.  doi: 10.1007/s00022-010-0028-0.

[31]

J.-C. Sikorav, Systémes Hamiltoniens et Topologie Symplectique, Dipartimento di Matematica dell'Universitá di Pisa, 1990.

[32]

C. Viterbo, Symplectic real algebraic geometry, preprint, (1999).

[33] Y. C. Xu, Linear Algebra and Matrix Theory, Higher Education Press, Beijing, 1992. 
[34]

F. C. Yang and Z. Wei, Generalized Euler identity for subdifferentials of homogeneous functions and applications, J. Math. Anal. Appl., 337 (2008), 516-523.  doi: 10.1016/j.jmaa.2007.04.008.

[1]

Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253

[2]

Kun Shi, Guangcun Lu. Higher P-symmetric Ekeland-Hofer capacities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1049-1070. doi: 10.3934/cpaa.2022009

[3]

Michael Khanevsky. Hofer's length spectrum of symplectic surfaces. Journal of Modern Dynamics, 2015, 9: 219-235. doi: 10.3934/jmd.2015.9.219

[4]

François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177

[5]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

[6]

Sobhan Seyfaddini. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball. Electronic Research Announcements, 2014, 21: 1-7. doi: 10.3934/era.2014.21.1

[7]

Morimichi Kawasaki, Ryuma Orita. Computation of annular capacity by Hamiltonian Floer theory of non-contractible periodic trajectories. Journal of Modern Dynamics, 2017, 11: 313-339. doi: 10.3934/jmd.2017013

[8]

Aleksander Ćwiszewski, Piotr Kokocki. Krasnosel'skii type formula and translation along trajectories method for evolution equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 605-628. doi: 10.3934/dcds.2008.22.605

[9]

Tianxiao Wang, Yufeng Shi. Symmetrical solutions of backward stochastic Volterra integral equations and their applications. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 251-274. doi: 10.3934/dcdsb.2010.14.251

[10]

Giovanni Panti. Billiards on pythagorean triples and their Minkowski functions. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4341-4378. doi: 10.3934/dcds.2020183

[11]

Meiyue Jiang, Chu Wang. The Orlicz-Minkowski problem for polytopes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1917-1930. doi: 10.3934/dcdss.2021043

[12]

Daniele Cassani, Bernhard Ruf, Cristina Tarsi. On the capacity approach to non-attainability of Hardy's inequality in $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 245-250. doi: 10.3934/dcdss.2019017

[13]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[14]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[15]

Kai Zehmisch. The codisc radius capacity. Electronic Research Announcements, 2013, 20: 77-96. doi: 10.3934/era.2013.20.77

[16]

Benny Avelin, Tuomo Kuusi, Mikko Parviainen. Variational parabolic capacity. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5665-5688. doi: 10.3934/dcds.2015.35.5665

[17]

Lasse Kiviluoto, Patric R. J. Östergård, Vesa P. Vaskelainen. Sperner capacity of small digraphs. Advances in Mathematics of Communications, 2009, 3 (2) : 125-133. doi: 10.3934/amc.2009.3.125

[18]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[19]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[20]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (188)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]