-
Previous Article
Mean dimension of shifts of finite type and of generalized inverse limits
- DCDS Home
- This Issue
-
Next Article
Existence of periodic waves for a perturbed quintic BBM equation
Representation formula for symmetrical symplectic capacity and applications
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
This is the second installment in a series of papers aimed at generalizing symplectic capacities and homologies. We study symmetric versions of symplectic capacities for real symplectic manifolds, and obtain corresponding results for them to those of the first [
References:
[1] |
P. Albers and U. Frauenfelder,
The space of linear anti-symplectic involutions is a homogenous space, Arch. Math. (Basel), 99 (2012), 531-536.
doi: 10.1007/s00013-012-0461-4. |
[2] |
S. Artstein-Avidan, R. Karasev and Y. Ostrover,
From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.
doi: 10.1215/00127094-2794999. |
[3] |
S. Artstein-Avidan and Y. Ostrover, A Brunn-Minkowski inequality for symplectic capacities of convex domains, Int. Math. Res. Not. IMRN 2008, (2008), Art. ID rnn044, 31 pp.
doi: 10.1093/imrn/rnn044. |
[4] |
S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Math. Res. Not. IMRN 2014, (2014), 165–193.
doi: 10.1093/imrn/rns216. |
[5] |
S. M. Bates,
Some simple continuity properties of symplectic capacities, The Floer Memorial Volume, Progr. Math., Birkhäuser, Basel, 133 (1995), 185-193.
|
[6] |
S. M. Bates,
A capacity representation theorem for some non-convex domains, Math. Z., 227 (1998), 571-581.
doi: 10.1007/PL00004394. |
[7] |
J. Blot, On the almost everywhere continuity, http://arXiv.org/abs/1411.3582v1[math.OC]. Google Scholar |
[8] |
J. Bourgain, J. Lindenstrauss and V. D. Milman,
Minkowski sums and symmetrizations, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., Springer, Berlin, 1317 (1988), 44-66.
doi: 10.1007/BFb0081735. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equation, Universitext. Springer, New York, 2011. |
[10] |
F. H. Clarke,
A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc., 76 (1979), 186-188.
doi: 10.2307/2042942. |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[12] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und Ihrer Grenzgebiete (3), 19. Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3. |
[13] |
I. Ekeland and H. Hofer,
Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.
doi: 10.1007/BF01215653. |
[14] |
A. Figalli, J. Palmer and Á. Pelayo,
Symplectic $G$-capacities and integrable systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 65-103.
|
[15] |
M. Ghomi,
Shortest periodic billiard trajectories in convex bodies, Geometric and Functional Analysis, 14 (2004), 295-302.
doi: 10.1007/s00039-004-0458-7. |
[16] |
H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis et Cetera, Academic Press, Boston, MA, (1990), 405–427. |
[17] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbúcher., Birkhäuser Verlag, Basel, 1994. Google Scholar |
[18] |
K. Irie,
Periodic billiard trajectories and Morse theory on loop spaces, Comment. Math. Helv., 90 (2015), 225-254.
doi: 10.4171/CMH/352. |
[19] |
R. R. Jin and G. C. Lu, Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications, (2019), arXiv: 1903.01116v2[math.SG]. Google Scholar |
[20] |
S. G. Krantz, Convex Analysis, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. |
[21] |
A. F. Künzle,
Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, Banach Center Publications, Polish Acad. Sci. Inst. Math., Warsaw, 33 (1996), 171-187.
|
[22] |
S. Lisi and A. Rieser, Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings, arXiv: 1312.7334[math.SG]. Google Scholar |
[23] |
C. G. Liu and Q. Wang,
Symmetrical symplectic capacity with applications, Discrete Contin. Dyn. Syst., 32 (2012), 2253-2270.
doi: 10.3934/dcds.2012.32.2253. |
[24] |
J. Moser and E. J. Zehnder, Notes on Dynamical Systems, Courant Lecture Notes in Mathematics, 12. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2005.
doi: 10.1090/cln/012. |
[25] |
E. Neduv,
Prescribed minimal period problems for convex Hamiltonian systems via Hofer-Zehnder symplectic capacity, Math. Z., 236 (2001), 99-112.
doi: 10.1007/PL00004828. |
[26] |
R. S. Palais,
The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322. |
[27] |
A. Rieser,
Lagrangian blow-ups, blow-downs, and applications to real packing, Journal of Symplectic Geometry, 12 (2014), 725-789.
doi: 10.4310/JSG.2014.v12.n4.a4. |
[28] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970. |
[29] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511526282. |
[30] |
R. Schneider,
Stability for some extremal properties of the simplex, Journal of Geometry, 96 (2009), 135-148.
doi: 10.1007/s00022-010-0028-0. |
[31] |
J.-C. Sikorav, Systémes Hamiltoniens et Topologie Symplectique, Dipartimento di Matematica dell'Universitá di Pisa, 1990. Google Scholar |
[32] |
C. Viterbo, Symplectic real algebraic geometry, preprint, (1999). Google Scholar |
[33] |
Y. C. Xu, Linear Algebra and Matrix Theory, Higher Education Press, Beijing, 1992.
![]() |
[34] |
F. C. Yang and Z. Wei,
Generalized Euler identity for subdifferentials of homogeneous functions and applications, J. Math. Anal. Appl., 337 (2008), 516-523.
doi: 10.1016/j.jmaa.2007.04.008. |
show all references
References:
[1] |
P. Albers and U. Frauenfelder,
The space of linear anti-symplectic involutions is a homogenous space, Arch. Math. (Basel), 99 (2012), 531-536.
doi: 10.1007/s00013-012-0461-4. |
[2] |
S. Artstein-Avidan, R. Karasev and Y. Ostrover,
From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.
doi: 10.1215/00127094-2794999. |
[3] |
S. Artstein-Avidan and Y. Ostrover, A Brunn-Minkowski inequality for symplectic capacities of convex domains, Int. Math. Res. Not. IMRN 2008, (2008), Art. ID rnn044, 31 pp.
doi: 10.1093/imrn/rnn044. |
[4] |
S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Math. Res. Not. IMRN 2014, (2014), 165–193.
doi: 10.1093/imrn/rns216. |
[5] |
S. M. Bates,
Some simple continuity properties of symplectic capacities, The Floer Memorial Volume, Progr. Math., Birkhäuser, Basel, 133 (1995), 185-193.
|
[6] |
S. M. Bates,
A capacity representation theorem for some non-convex domains, Math. Z., 227 (1998), 571-581.
doi: 10.1007/PL00004394. |
[7] |
J. Blot, On the almost everywhere continuity, http://arXiv.org/abs/1411.3582v1[math.OC]. Google Scholar |
[8] |
J. Bourgain, J. Lindenstrauss and V. D. Milman,
Minkowski sums and symmetrizations, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., Springer, Berlin, 1317 (1988), 44-66.
doi: 10.1007/BFb0081735. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equation, Universitext. Springer, New York, 2011. |
[10] |
F. H. Clarke,
A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc., 76 (1979), 186-188.
doi: 10.2307/2042942. |
[11] |
F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. |
[12] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und Ihrer Grenzgebiete (3), 19. Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3. |
[13] |
I. Ekeland and H. Hofer,
Symplectic topology and Hamiltonian dynamics, Math. Z., 200 (1989), 355-378.
doi: 10.1007/BF01215653. |
[14] |
A. Figalli, J. Palmer and Á. Pelayo,
Symplectic $G$-capacities and integrable systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18 (2018), 65-103.
|
[15] |
M. Ghomi,
Shortest periodic billiard trajectories in convex bodies, Geometric and Functional Analysis, 14 (2004), 295-302.
doi: 10.1007/s00039-004-0458-7. |
[16] |
H. Hofer and E. Zehnder, A new capacity for symplectic manifolds, Analysis et Cetera, Academic Press, Boston, MA, (1990), 405–427. |
[17] |
H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbúcher., Birkhäuser Verlag, Basel, 1994. Google Scholar |
[18] |
K. Irie,
Periodic billiard trajectories and Morse theory on loop spaces, Comment. Math. Helv., 90 (2015), 225-254.
doi: 10.4171/CMH/352. |
[19] |
R. R. Jin and G. C. Lu, Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications, (2019), arXiv: 1903.01116v2[math.SG]. Google Scholar |
[20] |
S. G. Krantz, Convex Analysis, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. |
[21] |
A. F. Künzle,
Singular Hamiltonian systems and symplectic capacities, Singularities and Differential Equations, Banach Center Publications, Polish Acad. Sci. Inst. Math., Warsaw, 33 (1996), 171-187.
|
[22] |
S. Lisi and A. Rieser, Coisotropic Hofer-Zehnder capacities and non-squeezing for relative embeddings, arXiv: 1312.7334[math.SG]. Google Scholar |
[23] |
C. G. Liu and Q. Wang,
Symmetrical symplectic capacity with applications, Discrete Contin. Dyn. Syst., 32 (2012), 2253-2270.
doi: 10.3934/dcds.2012.32.2253. |
[24] |
J. Moser and E. J. Zehnder, Notes on Dynamical Systems, Courant Lecture Notes in Mathematics, 12. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2005.
doi: 10.1090/cln/012. |
[25] |
E. Neduv,
Prescribed minimal period problems for convex Hamiltonian systems via Hofer-Zehnder symplectic capacity, Math. Z., 236 (2001), 99-112.
doi: 10.1007/PL00004828. |
[26] |
R. S. Palais,
The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322. |
[27] |
A. Rieser,
Lagrangian blow-ups, blow-downs, and applications to real packing, Journal of Symplectic Geometry, 12 (2014), 725-789.
doi: 10.4310/JSG.2014.v12.n4.a4. |
[28] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970. |
[29] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511526282. |
[30] |
R. Schneider,
Stability for some extremal properties of the simplex, Journal of Geometry, 96 (2009), 135-148.
doi: 10.1007/s00022-010-0028-0. |
[31] |
J.-C. Sikorav, Systémes Hamiltoniens et Topologie Symplectique, Dipartimento di Matematica dell'Universitá di Pisa, 1990. Google Scholar |
[32] |
C. Viterbo, Symplectic real algebraic geometry, preprint, (1999). Google Scholar |
[33] |
Y. C. Xu, Linear Algebra and Matrix Theory, Higher Education Press, Beijing, 1992.
![]() |
[34] |
F. C. Yang and Z. Wei,
Generalized Euler identity for subdifferentials of homogeneous functions and applications, J. Math. Anal. Appl., 337 (2008), 516-523.
doi: 10.1016/j.jmaa.2007.04.008. |
[1] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[2] |
Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 |
[3] |
Wenqin Zhang, Zhengchun Zhou, Udaya Parampalli, Vladimir Sidorenko. Capacity-achieving private information retrieval scheme with a smaller sub-packetization. Advances in Mathematics of Communications, 2021, 15 (2) : 347-363. doi: 10.3934/amc.2020070 |
[4] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[5] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[6] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[7] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[8] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295 |
[9] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[10] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[11] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[12] |
Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263 |
[13] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[14] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[15] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[16] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[17] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[18] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[19] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[20] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]