We study mean dimension of shifts of finite type defined on compact metric spaces and give its lower bound when the shift possesses a certain "periodic block" of arbitrarily large length. The result is applied to shift maps on generalized inverse limits with upper semi-continuous closed set-valued functions. In particular we obtain a refinement of some results due to Banič [
Citation: |
[1] | I. Banič, On dimension of inverse limits with upper semicontinuous set-valued bonding functions, Top. Appl., 154 (2007), 2771-2778. doi: 10.1016/j.topol.2007.06.002. |
[2] | M. Chacon-Tirado and V. Martínez-de-la-Vega, Closed subsets of the square whose inverse limits result in Hilbert cube, Colloq. Math., 152 (2018), 29-44. doi: 10.4064/cm6592-3-2017. |
[3] | M. Coornaert, Topological Dimension and Dynamical Systems, Univesitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-19794-4. |
[4] | A. N. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, 6 (2001), 61 pp, http://at.yorku.ca/t/a/i/c/43.htm. |
[5] | G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^{2}$, Top. Appl., 246 (2018), 106-136. doi: 10.1016/j.topol.2018.06.015. |
[6] | M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Mathematical Physics, Analysis and Geometry, 2 (1999), 323-415. doi: 10.1023/A:1009841100168. |
[7] | W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, Springer Briefs in Math., Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4487-9. |
[8] | K. Kawamura and J. Kennedy, Shift maps and their variants on inverse limits with set-valued functions, Top. Appl., 239 (2018), 92-114. doi: 10.1016/j.topol.2018.02.015. |
[9] | J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282. doi: 10.1007/s40995-017-0443-2. |
[10] | J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Th. Dyn. Sys., 38 (2018), 1499-1524. doi: 10.1017/etds.2016.73. |
[11] | E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24. doi: 10.1007/BF02810577. |
[12] | W. S. Mahavier, Inverse limits with subsets of $[0, 1]\times[0, 1]$, Top. Appl., 141 (2004), 225-231. doi: 10.1016/j.topol.2003.12.008. |
[13] | Y. Shitanda, A fixed point theorem and equivariant points for set-valued mappings, Publ. RIMS Kyoto Univ., 45 (2009), 811-844. doi: 10.2977/prims/1249478966. |
[14] | M. Tsukamoto, Mean dimension of full shifts, Israel J. Math., 230 (2019), 183-193. doi: 10.1007/s11856-018-1813-y. |
[15] | P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. |