• Previous Article
    Exponential upper bounds on the spectral gaps and homogeneous spectrum for the non-critical extended Harper's model
  • DCDS Home
  • This Issue
  • Next Article
    Representation formula for symmetrical symplectic capacity and applications
August  2020, 40(8): 4767-4775. doi: 10.3934/dcds.2020200

Mean dimension of shifts of finite type and of generalized inverse limits

Department of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan

Received  June 2019 Revised  December 2019 Published  May 2020

We study mean dimension of shifts of finite type defined on compact metric spaces and give its lower bound when the shift possesses a certain "periodic block" of arbitrarily large length. The result is applied to shift maps on generalized inverse limits with upper semi-continuous closed set-valued functions. In particular we obtain a refinement of some results due to Banič [1] and Erceg and Kennedy [5] on the dimension of the inverse limit spaces and topological entropy of their shifts.

Citation: Kazuhiro Kawamura. Mean dimension of shifts of finite type and of generalized inverse limits. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4767-4775. doi: 10.3934/dcds.2020200
References:
[1]

I. Banič, On dimension of inverse limits with upper semicontinuous set-valued bonding functions, Top. Appl., 154 (2007), 2771-2778.  doi: 10.1016/j.topol.2007.06.002.  Google Scholar

[2]

M. Chacon-Tirado and V. Martínez-de-la-Vega, Closed subsets of the square whose inverse limits result in Hilbert cube, Colloq. Math., 152 (2018), 29-44.  doi: 10.4064/cm6592-3-2017.  Google Scholar

[3]

M. Coornaert, Topological Dimension and Dynamical Systems, Univesitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-19794-4.  Google Scholar

[4]

A. N. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, 6 (2001), 61 pp, http://at.yorku.ca/t/a/i/c/43.htm. Google Scholar

[5]

G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^{2}$, Top. Appl., 246 (2018), 106-136.  doi: 10.1016/j.topol.2018.06.015.  Google Scholar

[6]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Mathematical Physics, Analysis and Geometry, 2 (1999), 323-415.  doi: 10.1023/A:1009841100168.  Google Scholar

[7]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, Springer Briefs in Math., Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[8]

K. Kawamura and J. Kennedy, Shift maps and their variants on inverse limits with set-valued functions, Top. Appl., 239 (2018), 92-114.  doi: 10.1016/j.topol.2018.02.015.  Google Scholar

[9]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.  doi: 10.1007/s40995-017-0443-2.  Google Scholar

[10]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Th. Dyn. Sys., 38 (2018), 1499-1524.  doi: 10.1017/etds.2016.73.  Google Scholar

[11]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[12]

W. S. Mahavier, Inverse limits with subsets of $[0, 1]\times[0, 1]$, Top. Appl., 141 (2004), 225-231.  doi: 10.1016/j.topol.2003.12.008.  Google Scholar

[13]

Y. Shitanda, A fixed point theorem and equivariant points for set-valued mappings, Publ. RIMS Kyoto Univ., 45 (2009), 811-844.  doi: 10.2977/prims/1249478966.  Google Scholar

[14]

M. Tsukamoto, Mean dimension of full shifts, Israel J. Math., 230 (2019), 183-193.  doi: 10.1007/s11856-018-1813-y.  Google Scholar

[15]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

show all references

References:
[1]

I. Banič, On dimension of inverse limits with upper semicontinuous set-valued bonding functions, Top. Appl., 154 (2007), 2771-2778.  doi: 10.1016/j.topol.2007.06.002.  Google Scholar

[2]

M. Chacon-Tirado and V. Martínez-de-la-Vega, Closed subsets of the square whose inverse limits result in Hilbert cube, Colloq. Math., 152 (2018), 29-44.  doi: 10.4064/cm6592-3-2017.  Google Scholar

[3]

M. Coornaert, Topological Dimension and Dynamical Systems, Univesitext. Springer, Cham, 2015. doi: 10.1007/978-3-319-19794-4.  Google Scholar

[4]

A. N. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, 6 (2001), 61 pp, http://at.yorku.ca/t/a/i/c/43.htm. Google Scholar

[5]

G. Erceg and J. Kennedy, Topological entropy on closed sets in $[0, 1]^{2}$, Top. Appl., 246 (2018), 106-136.  doi: 10.1016/j.topol.2018.06.015.  Google Scholar

[6]

M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Mathematical Physics, Analysis and Geometry, 2 (1999), 323-415.  doi: 10.1023/A:1009841100168.  Google Scholar

[7]

W. T. Ingram, An Introduction to Inverse Limits with Set-Valued Functions, Springer Briefs in Math., Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4487-9.  Google Scholar

[8]

K. Kawamura and J. Kennedy, Shift maps and their variants on inverse limits with set-valued functions, Top. Appl., 239 (2018), 92-114.  doi: 10.1016/j.topol.2018.02.015.  Google Scholar

[9]

J. P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math., 43 (2017), 263-282.  doi: 10.1007/s40995-017-0443-2.  Google Scholar

[10]

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Th. Dyn. Sys., 38 (2018), 1499-1524.  doi: 10.1017/etds.2016.73.  Google Scholar

[11]

E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel J. Math., 115 (2000), 1-24.  doi: 10.1007/BF02810577.  Google Scholar

[12]

W. S. Mahavier, Inverse limits with subsets of $[0, 1]\times[0, 1]$, Top. Appl., 141 (2004), 225-231.  doi: 10.1016/j.topol.2003.12.008.  Google Scholar

[13]

Y. Shitanda, A fixed point theorem and equivariant points for set-valued mappings, Publ. RIMS Kyoto Univ., 45 (2009), 811-844.  doi: 10.2977/prims/1249478966.  Google Scholar

[14]

M. Tsukamoto, Mean dimension of full shifts, Israel J. Math., 230 (2019), 183-193.  doi: 10.1007/s11856-018-1813-y.  Google Scholar

[15]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[1]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[2]

Dou Dou. Minimal subshifts of arbitrary mean topological dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1411-1424. doi: 10.3934/dcds.2017058

[3]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[4]

Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094

[5]

Silvère Gangloff, Benjamin Hellouin de Menibus. Effect of quantified irreducibility on the computability of subshift entropy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1975-2000. doi: 10.3934/dcds.2019083

[6]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[7]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[8]

João Ferreira Alves, Michal Málek. Zeta functions and topological entropy of periodic nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 465-482. doi: 10.3934/dcds.2013.33.465

[9]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[10]

Yulia Karpeshina and Young-Ran Lee. On polyharmonic operators with limit-periodic potential in dimension two. Electronic Research Announcements, 2006, 12: 113-120.

[11]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[12]

Christopher Hoffman. Subshifts of finite type which have completely positive entropy. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1497-1516. doi: 10.3934/dcds.2011.29.1497

[13]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[14]

Jaume Llibre. Brief survey on the topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[15]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[16]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[17]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 545-556. doi: 10.3934/dcds.2011.31.545

[18]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[19]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[20]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (42)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]