• Previous Article
    Classification to the positive radial solutions with weighted biharmonic equation
  • DCDS Home
  • This Issue
  • Next Article
    Exponential upper bounds on the spectral gaps and homogeneous spectrum for the non-critical extended Harper's model
August  2020, 40(8): 4801-4819. doi: 10.3934/dcds.2020202

Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation

1. 

Sorbonne Université & CNRS, Laboratoire Jacques-Louis Lions, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

Department of Mathematics, Hangzhou Normal University, 2318 Yuhangtang Road, 311121 Hangzhou, China

* Corresponding author

Received  October 2019 Published  May 2020

Fund Project: ZH thanks NSFC 11671353, 11401153, Zhejiang Provincial Natural Science Foundation of China under Grant No. LY18A010025, and CSC for their financial support; and the Laboratoire JacquesLouis Lions for its kind hospitality

We study the time-asymptotic behavior of solutions of the Schrödinger equation with nonlinear dissipation
$ \begin{equation*} \partial _t u = i \Delta u + \lambda |u|^\alpha u \end{equation*} $
in
$ {\mathbb R}^N $
,
$ N\geq1 $
, where
$ \lambda\in {\mathbb C} $
,
$ \Re \lambda <0 $
and
$ 0<\alpha<\frac2N $
. We give a precise description of the behavior of the solutions (including decay rates in
$ L^2 $
and
$ L^\infty $
, and asymptotic profile), for a class of arbitrarily large initial data, under the additional assumption that
$ \alpha $
is sufficiently close to
$ \frac2N $
.
Citation: Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202
References:
[1]

T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.

[2]

T. Cazenave, Z. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dynam. Differential Equations (2020). doi: 10.1007/s10884-020-09841-8.

[3]

T. CazenaveY. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dynam. Systems, 39 (2019), 1171-1183.  doi: 10.3934/dcds.2019050.

[4]

T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.

[5]

T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.

[6]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.

[7]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.  doi: 10.1103/RevModPhys.65.851.

[8]

J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239. 

[9]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Ⅱ. Scattering theory, general case, J. Funct. Anal., 32 (1979), 33-71.  doi: 10.1016/0022-1236(79)90077-6.

[10]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Ⅲ. Special theories in dimensions 1, 2 and 3, Ann. Inst. Henri Poincaré Sect. A (N.S.), 28 (1978), 287-316. 

[11]

N. Hayashi, C. H. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields, Adv. Math. Phys., (2016), Art. ID 3702738, 7 pp. doi: 10.1155/2016/3702738.

[12]

N. HayashiC. H. Li and P. I. Naumkin, Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 16 (2017), 2089-2104.  doi: 10.3934/cpaa.2017103.

[13]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129. 

[14]

T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sønderborg, 1988), Lecture Notes in Phys., Springer, Berlin, 345 (1989), 218-263.  doi: 10.1007/3-540-51783-9_22.

[15]

N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39-64.  doi: 10.2969/jmsj/06110039.

[16]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 759-834.  doi: 10.1016/S1874-575X(02)80036-4.

[17]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.

[18]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.

[19]

A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.  doi: 10.1080/03605300600910316.

[20]

K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), 529-545.  doi: 10.1017/S0022112071001733.

[21]

W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.

show all references

References:
[1]

T. CazenaveS. CorreiaF. Dickstein and F. B. Weissler, A Fujita-type blowup result and low energy scattering for a nonlinear Schrödinger equation, São Paulo J. Math. Sci., 9 (2015), 146-161.  doi: 10.1007/s40863-015-0020-6.

[2]

T. Cazenave, Z. Han and Y. Martel, Blowup on an arbitrary compact set for a Schrödinger equation with nonlinear source term, J. Dynam. Differential Equations (2020). doi: 10.1007/s10884-020-09841-8.

[3]

T. CazenaveY. Martel and L. F. Zhao, Finite-time blowup for a Schrödinger equation with nonlinear source term, Discrete Contin. Dynam. Systems, 39 (2019), 1171-1183.  doi: 10.3934/dcds.2019050.

[4]

T. Cazenave and I. Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Commun. Contemp. Math., 19 (2017), 1650038, 20 pp. doi: 10.1142/S0219199716500383.

[5]

T. Cazenave and I. Naumkin, Modified scattering for the critical nonlinear Schrödinger equation, J. Funct. Anal., 274 (2018), 402-432.  doi: 10.1016/j.jfa.2017.10.022.

[6]

T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.  doi: 10.1007/BF02099529.

[7]

M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112.  doi: 10.1103/RevModPhys.65.851.

[8]

J. GinibreT. Ozawa and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 60 (1994), 211-239. 

[9]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Ⅱ. Scattering theory, general case, J. Funct. Anal., 32 (1979), 33-71.  doi: 10.1016/0022-1236(79)90077-6.

[10]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. Ⅲ. Special theories in dimensions 1, 2 and 3, Ann. Inst. Henri Poincaré Sect. A (N.S.), 28 (1978), 287-316. 

[11]

N. Hayashi, C. H. Li and P. I. Naumkin, Time decay for nonlinear dissipative Schrödinger equations in optical fields, Adv. Math. Phys., (2016), Art. ID 3702738, 7 pp. doi: 10.1155/2016/3702738.

[12]

N. HayashiC. H. Li and P. I. Naumkin, Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 16 (2017), 2089-2104.  doi: 10.3934/cpaa.2017103.

[13]

T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129. 

[14]

T. Kato, Nonlinear Schrödinger equations, Schrödinger Operators (Sønderborg, 1988), Lecture Notes in Phys., Springer, Berlin, 345 (1989), 218-263.  doi: 10.1007/3-540-51783-9_22.

[15]

N. Kita and A. Shimomura, Large time behavior of solutions to Schrödinger equations with a dissipative nonlinearity for arbitrarily large initial data, J. Math. Soc. Japan, 61 (2009), 39-64.  doi: 10.2969/jmsj/06110039.

[16]

A. Mielke, The Ginzburg-Landau equation in its role as a modulation equation, Handbook of Dynamical Systems, North-Holland, Amsterdam, 2 (2002), 759-834.  doi: 10.1016/S1874-575X(02)80036-4.

[17]

K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl., 9 (2002), 45-68.  doi: 10.1007/s00030-002-8118-9.

[18]

T. Ozawa, Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25 (2006), 403-408.  doi: 10.1007/s00526-005-0349-2.

[19]

A. Shimomura, Asymptotic behavior of solutions for Schrödinger equations with dissipative nonlinearities, Comm. Partial Differential Equations, 31 (2006), 1407-1423.  doi: 10.1080/03605300600910316.

[20]

K. Stewartson and J. T. Stuart, A non-linear instability theory for a wave system in plane Poiseuille flow, J. Fluid Mech., 48 (1971), 529-545.  doi: 10.1017/S0022112071001733.

[21]

W. A. Strauss, Nonlinear scattering theory at low energy: Sequel, J. Funct. Anal., 43 (1981), 281-293.  doi: 10.1016/0022-1236(81)90019-7.

[1]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[2]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[3]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[4]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[5]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[6]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[7]

Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control and Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015

[8]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[9]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[10]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[11]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[13]

Yuki Kaneko, Hiroshi Matsuzawa, Yoshio Yamada. A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2719-2745. doi: 10.3934/dcds.2021209

[14]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[15]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[16]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[17]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[18]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[19]

Hongwei Wang, Amin Esfahani. Well-posedness and asymptotic behavior of the dissipative Ostrovsky equation. Evolution Equations and Control Theory, 2019, 8 (4) : 709-735. doi: 10.3934/eect.2019035

[20]

Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (263)
  • HTML views (87)
  • Cited by (2)

Other articles
by authors

[Back to Top]