August  2020, 40(8): 4907-4925. doi: 10.3934/dcds.2020205

Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation

1. 

Graduate School of Engineering, Musashino University, Tokyo, 135-8181, Japan

2. 

Department of Applied Mathematics, Waseda University, Tokyo, 169-8555, Japan

3. 

Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan

4. 

Joint Research Center for Science and Technology, Ryukoku University, Seta, Otsu, 520-2194, Japan

* Corresponding author: Shoji Yotsutani

Received  August 2019 Revised  February 2020 Published  May 2020

Fund Project: K. Kuto was supported by Grant-in-Aid. for Scientific Research (C) 19K03581. T. Tsujikawa was supported by Grant-in-Aid. for Scientific Research (C) 17K05334. S. Yotsutani was supported by Grant-in-Aid. for Scientific Research (C) 19K03593. This work was supported by Joint Research Center for Science and Technology of Ryukoku University in 2020

We are interested in the Neumann problem of a 1D stationary Allen-Cahn equation with a nonlocal term. In our previous papers [4] and [5], we obtained a global bifurcation branch, and showed the existence and uniqueness of secondary bifurcation point. At this point, asymmetric solutions bifurcate from a branch of odd-symmetric solutions. In this paper, we give representation formulas of all solutions on the secondary bifurcation branch, and a bifurcation sheet which consists of bifurcation curves with heights.

Citation: Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205
References:
[1]

N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar

[2]

X. F. ChenD. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equations with a nonlocal term, Nonlinear Anal. TMA, 28 (1997), 1283-1298.  doi: 10.1016/S0362-546X(97)82875-1.  Google Scholar

[3]

S. KosugiY. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629.  doi: 10.3934/dcds.2007.19.609.  Google Scholar

[4]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Secondary bifurcation for a nonlocal Allen-Cahn equation, J. Differential Equations, 263 (2017), 2687-2714.  doi: 10.1016/j.jde.2017.04.010.  Google Scholar

[5]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Global solution branches for a nonlocal Allen-Cahn equation, J. Differential Equations, 264 (2018), 5928-5949.  doi: 10.1016/j.jde.2018.01.025.  Google Scholar

[6]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 467–476. doi: 10.3934/proc.2013.2013.467.  Google Scholar

[7]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[8]

Y. MoriA. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.  doi: 10.1137/10079118X.  Google Scholar

[9]

T. Mori, K. Kuto, M. Nagayama, T. Tsujikawa and S. Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 861–877. doi: 10.3934/proc.2015.0861.  Google Scholar

[10]

M. Murai, W. Mastumoto and S. Yotsutani, Representation formula for the plane elastic closed curve, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 565–585. doi: 10.3934/proc.2013.2013.565.  Google Scholar

[11]

M. Murai, K. Sakamoto and S. Yostutani, Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 878–900. doi: 10.3934/proc.2015.0878.  Google Scholar

[12]

R. Schaaf, Global Solution Branches of Two-Point Boundary Value Problems, Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346.  Google Scholar

[13]

S. Tasaki and T. Suzuki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., TMA, 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.  Google Scholar

[14]

T. Wakasa and S. Yotsutani, Limiting classification on linearized eigenvalue problems for 1-dimensional Allen-Cahn equation Ⅱ: Asymptotic formulas of eigenfunctions, J. Differential Equations, 261 (2016), 5465-5498.  doi: 10.1016/j.jde.2016.08.016.  Google Scholar

show all references

References:
[1]

N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar

[2]

X. F. ChenD. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equations with a nonlocal term, Nonlinear Anal. TMA, 28 (1997), 1283-1298.  doi: 10.1016/S0362-546X(97)82875-1.  Google Scholar

[3]

S. KosugiY. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629.  doi: 10.3934/dcds.2007.19.609.  Google Scholar

[4]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Secondary bifurcation for a nonlocal Allen-Cahn equation, J. Differential Equations, 263 (2017), 2687-2714.  doi: 10.1016/j.jde.2017.04.010.  Google Scholar

[5]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Global solution branches for a nonlocal Allen-Cahn equation, J. Differential Equations, 264 (2018), 5928-5949.  doi: 10.1016/j.jde.2018.01.025.  Google Scholar

[6]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 467–476. doi: 10.3934/proc.2013.2013.467.  Google Scholar

[7]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[8]

Y. MoriA. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.  doi: 10.1137/10079118X.  Google Scholar

[9]

T. Mori, K. Kuto, M. Nagayama, T. Tsujikawa and S. Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 861–877. doi: 10.3934/proc.2015.0861.  Google Scholar

[10]

M. Murai, W. Mastumoto and S. Yotsutani, Representation formula for the plane elastic closed curve, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 565–585. doi: 10.3934/proc.2013.2013.565.  Google Scholar

[11]

M. Murai, K. Sakamoto and S. Yostutani, Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 878–900. doi: 10.3934/proc.2015.0878.  Google Scholar

[12]

R. Schaaf, Global Solution Branches of Two-Point Boundary Value Problems, Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346.  Google Scholar

[13]

S. Tasaki and T. Suzuki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., TMA, 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.  Google Scholar

[14]

T. Wakasa and S. Yotsutani, Limiting classification on linearized eigenvalue problems for 1-dimensional Allen-Cahn equation Ⅱ: Asymptotic formulas of eigenfunctions, J. Differential Equations, 261 (2016), 5465-5498.  doi: 10.1016/j.jde.2016.08.016.  Google Scholar

Figure 1.  Bifurcation diagram $ \mathcal{S}(\mu) $
Figure 2.  complete elliptic integrals $ K(k) $, $ E(k) $ and $ \Pi(3/4,k) $
Figure 3.  Graph of $ \mathscr{A}(p, h) $
Figure 4.  Bifurcation sheet $ \varXi(\lambda, d) $
Figure 5.  Bifurcation sheet on $ P\!H $-plane
Figure 6.  Bifurcation curve
Figure 7.  Bifurcation curve on $ P\!H $-plane
[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]