August  2020, 40(8): 4907-4925. doi: 10.3934/dcds.2020205

Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation

1. 

Graduate School of Engineering, Musashino University, Tokyo, 135-8181, Japan

2. 

Department of Applied Mathematics, Waseda University, Tokyo, 169-8555, Japan

3. 

Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192, Japan

4. 

Joint Research Center for Science and Technology, Ryukoku University, Seta, Otsu, 520-2194, Japan

* Corresponding author: Shoji Yotsutani

Received  August 2019 Revised  February 2020 Published  May 2020

Fund Project: K. Kuto was supported by Grant-in-Aid. for Scientific Research (C) 19K03581. T. Tsujikawa was supported by Grant-in-Aid. for Scientific Research (C) 17K05334. S. Yotsutani was supported by Grant-in-Aid. for Scientific Research (C) 19K03593. This work was supported by Joint Research Center for Science and Technology of Ryukoku University in 2020

We are interested in the Neumann problem of a 1D stationary Allen-Cahn equation with a nonlocal term. In our previous papers [4] and [5], we obtained a global bifurcation branch, and showed the existence and uniqueness of secondary bifurcation point. At this point, asymmetric solutions bifurcate from a branch of odd-symmetric solutions. In this paper, we give representation formulas of all solutions on the secondary bifurcation branch, and a bifurcation sheet which consists of bifurcation curves with heights.

Citation: Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205
References:
[1]

N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar

[2]

X. F. ChenD. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equations with a nonlocal term, Nonlinear Anal. TMA, 28 (1997), 1283-1298.  doi: 10.1016/S0362-546X(97)82875-1.  Google Scholar

[3]

S. KosugiY. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629.  doi: 10.3934/dcds.2007.19.609.  Google Scholar

[4]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Secondary bifurcation for a nonlocal Allen-Cahn equation, J. Differential Equations, 263 (2017), 2687-2714.  doi: 10.1016/j.jde.2017.04.010.  Google Scholar

[5]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Global solution branches for a nonlocal Allen-Cahn equation, J. Differential Equations, 264 (2018), 5928-5949.  doi: 10.1016/j.jde.2018.01.025.  Google Scholar

[6]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 467–476. doi: 10.3934/proc.2013.2013.467.  Google Scholar

[7]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[8]

Y. MoriA. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.  doi: 10.1137/10079118X.  Google Scholar

[9]

T. Mori, K. Kuto, M. Nagayama, T. Tsujikawa and S. Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 861–877. doi: 10.3934/proc.2015.0861.  Google Scholar

[10]

M. Murai, W. Mastumoto and S. Yotsutani, Representation formula for the plane elastic closed curve, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 565–585. doi: 10.3934/proc.2013.2013.565.  Google Scholar

[11]

M. Murai, K. Sakamoto and S. Yostutani, Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 878–900. doi: 10.3934/proc.2015.0878.  Google Scholar

[12]

R. Schaaf, Global Solution Branches of Two-Point Boundary Value Problems, Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346.  Google Scholar

[13]

S. Tasaki and T. Suzuki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., TMA, 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.  Google Scholar

[14]

T. Wakasa and S. Yotsutani, Limiting classification on linearized eigenvalue problems for 1-dimensional Allen-Cahn equation Ⅱ: Asymptotic formulas of eigenfunctions, J. Differential Equations, 261 (2016), 5465-5498.  doi: 10.1016/j.jde.2016.08.016.  Google Scholar

show all references

References:
[1]

N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar

[2]

X. F. ChenD. Hilhorst and E. Logak, Asymptotic behavior of solutions of an Allen-Cahn equations with a nonlocal term, Nonlinear Anal. TMA, 28 (1997), 1283-1298.  doi: 10.1016/S0362-546X(97)82875-1.  Google Scholar

[3]

S. KosugiY. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals, Discrete Contin. Dyn. Syst., 19 (2007), 609-629.  doi: 10.3934/dcds.2007.19.609.  Google Scholar

[4]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Secondary bifurcation for a nonlocal Allen-Cahn equation, J. Differential Equations, 263 (2017), 2687-2714.  doi: 10.1016/j.jde.2017.04.010.  Google Scholar

[5]

K. KutoT. MoriT. Tsujikawa and S. Yotsutani, Global solution branches for a nonlocal Allen-Cahn equation, J. Differential Equations, 264 (2018), 5928-5949.  doi: 10.1016/j.jde.2018.01.025.  Google Scholar

[6]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 467–476. doi: 10.3934/proc.2013.2013.467.  Google Scholar

[7]

Y. LouW.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[8]

Y. MoriA. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization, SIAM J. Appl. Math., 71 (2011), 1401-1427.  doi: 10.1137/10079118X.  Google Scholar

[9]

T. Mori, K. Kuto, M. Nagayama, T. Tsujikawa and S. Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 861–877. doi: 10.3934/proc.2015.0861.  Google Scholar

[10]

M. Murai, W. Mastumoto and S. Yotsutani, Representation formula for the plane elastic closed curve, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 9th AIMS Conference. Suppl., (2013), 565–585. doi: 10.3934/proc.2013.2013.565.  Google Scholar

[11]

M. Murai, K. Sakamoto and S. Yostutani, Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition, Discrete Contin. Dyn. Syst., Dynamical Systems, Differential Equations and Applications. 10th AIMS Conference. Suppl., (2015), 878–900. doi: 10.3934/proc.2015.0878.  Google Scholar

[12]

R. Schaaf, Global Solution Branches of Two-Point Boundary Value Problems, Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346.  Google Scholar

[13]

S. Tasaki and T. Suzuki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., TMA, 71 (2009), 1329-1349.  doi: 10.1016/j.na.2008.12.007.  Google Scholar

[14]

T. Wakasa and S. Yotsutani, Limiting classification on linearized eigenvalue problems for 1-dimensional Allen-Cahn equation Ⅱ: Asymptotic formulas of eigenfunctions, J. Differential Equations, 261 (2016), 5465-5498.  doi: 10.1016/j.jde.2016.08.016.  Google Scholar

Figure 1.  Bifurcation diagram $ \mathcal{S}(\mu) $
Figure 2.  complete elliptic integrals $ K(k) $, $ E(k) $ and $ \Pi(3/4,k) $
Figure 3.  Graph of $ \mathscr{A}(p, h) $
Figure 4.  Bifurcation sheet $ \varXi(\lambda, d) $
Figure 5.  Bifurcation sheet on $ P\!H $-plane
Figure 6.  Bifurcation curve
Figure 7.  Bifurcation curve on $ P\!H $-plane
[1]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[2]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[3]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[4]

Grégory Faye. Multidimensional stability of planar traveling waves for the scalar nonlocal Allen-Cahn equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2473-2496. doi: 10.3934/dcds.2016.36.2473

[5]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[6]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[7]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020025

[8]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[9]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[10]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[11]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[12]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[13]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[14]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[15]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[16]

Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113

[17]

Fang Li, Kimie Nakashima. Transition layers for a spatially inhomogeneous Allen-Cahn equation in multi-dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1391-1420. doi: 10.3934/dcds.2012.32.1391

[18]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[19]

Takeshi Ohtsuka, Ken Shirakawa, Noriaki Yamazaki. Optimal control problem for Allen-Cahn type equation associated with total variation energy. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 159-181. doi: 10.3934/dcdss.2012.5.159

[20]

Xufeng Xiao, Xinlong Feng, Jinyun Yuan. The stabilized semi-implicit finite element method for the surface Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2857-2877. doi: 10.3934/dcdsb.2017154

2019 Impact Factor: 1.338

Article outline

Figures and Tables

[Back to Top]