August  2020, 40(8): 4985-4999. doi: 10.3934/dcds.2020208

Lifespan of solutions to the Strauss type wave system on asymptotically flat space-times

School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China

* Corresponding author: Chengbo Wang

Received  October 2019 Revised  March 2020 Published  May 2020

Fund Project: The authors were supported by NSFC 11671353 and 11971428

By assuming certain local energy estimates on $ (1+3) $-dimensional asymptotically flat space-time, we study the existence portion of the Strauss type wave system. Firstly we give a kind of space-time estimates which are related to the local energy norm that appeared in [13]. These estimates can be used to prove a series of weighted Strichartz and KSS type estimates, for wave equations on asymptotically flat space-time. Then we apply the space-time estimates to obtain the lower bound of the lifespan when the nonlinear exponents $ p $ and $ q\ge 2 $. In particular, our bound for the subcritical case is sharp in general and we extend the known region of $ (p, q) $ to admit global solutions. In addition, the initial data are not required to be compactly supported, when $ p, q>2 $.

Citation: Wei Dai, Daoyuan Fang, Chengbo Wang. Lifespan of solutions to the Strauss type wave system on asymptotically flat space-times. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4985-4999. doi: 10.3934/dcds.2020208
References:
[1]

R. AgemiY. Kurokawa and H. Takamura, Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differential Equations, 167 (2000), 87-133.  doi: 10.1006/jdeq.2000.3766.  Google Scholar

[2]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[3]

D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and formation of singularities for a class of hyperbolic systems, In Geometrical optics and related topics (Cortona, 1996), volume 32 of Progr. Nonlinear Differential Equations Appl., pages 117a€"140. Birkhäuser Boston, Boston, MA, 1997.  Google Scholar

[4]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.  doi: 10.1515/FORM.2011.009.  Google Scholar

[5]

K. HidanoJ. MetcalfeH. F. SmithC. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, Trans. Amer. Math. Soc., 362 (2010), 2789-2809.  doi: 10.1090/S0002-9947-09-05053-3.  Google Scholar

[6]

K. HidanoC. Wang and K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations, Math. Ann., 366 (2016), 667-694.  doi: 10.1007/s00208-015-1346-1.  Google Scholar

[7]

J.-C. JiangC. Wang and X. Yu, Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012), 1723-1752.  doi: 10.3934/cpaa.2012.11.1723.  Google Scholar

[8]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.  doi: 10.1007/BF01647974.  Google Scholar

[9]

T.-T. Li and Y. Zhou, A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions, Indiana Univ. Math. J., 44 (1995), 1207-1248.  doi: 10.1512/iumj.1995.44.2026.  Google Scholar

[10]

H. LindbladJ. MetcalfeC. D. SoggeM. Tohaneanu and C. Wang, The Strauss conjecture on Kerr black hole backgrounds, Math. Ann., 359 (2014), 637-661.  doi: 10.1007/s00208-014-1006-x.  Google Scholar

[11]

J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188-209.  doi: 10.1137/050627149.  Google Scholar

[12]

J. Metcalfe and D. Spencer, Global existence for a coupled wave system related to the Strauss conjecture, Commun. Pure Appl. Anal., 17 (2018), 593-604.  doi: 10.3934/cpaa.2018032.  Google Scholar

[13]

J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, Math. Ann., 353 (2012), 1183-1237.  doi: 10.1007/s00208-011-0714-8.  Google Scholar

[14]

J. Metcalfe and C. Wang, The Strauss conjecture on asymptotically flat space-times, SIAM J. Math. Anal., 49 (2017), 4579-4594.  doi: 10.1137/16M1074886.  Google Scholar

[15]

C. D. Sogge and C. Wang, Concerning the wave equation on asymptotically Euclidean manifolds, J. Anal. Math., 112 (2010), 1-32.  doi: 10.1007/s11854-010-0023-2.  Google Scholar

[16]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[17]

C. Wang, Long-time existence for semilinear wave equations on asymptotically flat space-times, Comm. Partial Differential Equations, 42 (2017), 1150-1174.  doi: 10.1080/03605302.2017.1345939.  Google Scholar

show all references

References:
[1]

R. AgemiY. Kurokawa and H. Takamura, Critical curve for $p$-$q$ systems of nonlinear wave equations in three space dimensions, J. Differential Equations, 167 (2000), 87-133.  doi: 10.1006/jdeq.2000.3766.  Google Scholar

[2]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[3]

D. Del Santo, V. Georgiev and E. Mitidieri, Global existence of the solutions and formation of singularities for a class of hyperbolic systems, In Geometrical optics and related topics (Cortona, 1996), volume 32 of Progr. Nonlinear Differential Equations Appl., pages 117a€"140. Birkhäuser Boston, Boston, MA, 1997.  Google Scholar

[4]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.  doi: 10.1515/FORM.2011.009.  Google Scholar

[5]

K. HidanoJ. MetcalfeH. F. SmithC. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, Trans. Amer. Math. Soc., 362 (2010), 2789-2809.  doi: 10.1090/S0002-9947-09-05053-3.  Google Scholar

[6]

K. HidanoC. Wang and K. Yokoyama, Combined effects of two nonlinearities in lifespan of small solutions to semi-linear wave equations, Math. Ann., 366 (2016), 667-694.  doi: 10.1007/s00208-015-1346-1.  Google Scholar

[7]

J.-C. JiangC. Wang and X. Yu, Generalized and weighted Strichartz estimates, Commun. Pure Appl. Anal., 11 (2012), 1723-1752.  doi: 10.3934/cpaa.2012.11.1723.  Google Scholar

[8]

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235-268.  doi: 10.1007/BF01647974.  Google Scholar

[9]

T.-T. Li and Y. Zhou, A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions, Indiana Univ. Math. J., 44 (1995), 1207-1248.  doi: 10.1512/iumj.1995.44.2026.  Google Scholar

[10]

H. LindbladJ. MetcalfeC. D. SoggeM. Tohaneanu and C. Wang, The Strauss conjecture on Kerr black hole backgrounds, Math. Ann., 359 (2014), 637-661.  doi: 10.1007/s00208-014-1006-x.  Google Scholar

[11]

J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188-209.  doi: 10.1137/050627149.  Google Scholar

[12]

J. Metcalfe and D. Spencer, Global existence for a coupled wave system related to the Strauss conjecture, Commun. Pure Appl. Anal., 17 (2018), 593-604.  doi: 10.3934/cpaa.2018032.  Google Scholar

[13]

J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, Math. Ann., 353 (2012), 1183-1237.  doi: 10.1007/s00208-011-0714-8.  Google Scholar

[14]

J. Metcalfe and C. Wang, The Strauss conjecture on asymptotically flat space-times, SIAM J. Math. Anal., 49 (2017), 4579-4594.  doi: 10.1137/16M1074886.  Google Scholar

[15]

C. D. Sogge and C. Wang, Concerning the wave equation on asymptotically Euclidean manifolds, J. Anal. Math., 112 (2010), 1-32.  doi: 10.1007/s11854-010-0023-2.  Google Scholar

[16]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18. North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[17]

C. Wang, Long-time existence for semilinear wave equations on asymptotically flat space-times, Comm. Partial Differential Equations, 42 (2017), 1150-1174.  doi: 10.1080/03605302.2017.1345939.  Google Scholar

[1]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

[2]

Youngwoo Koh, Ihyeok Seo. Strichartz estimates for Schrödinger equations in weighted $L^2$ spaces and their applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4877-4906. doi: 10.3934/dcds.2017210

[3]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[4]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[5]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[6]

Robert Schippa. Generalized inhomogeneous Strichartz estimates. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3387-3410. doi: 10.3934/dcds.2017143

[7]

Gong Chen. Strichartz estimates for charge transfer models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1201-1226. doi: 10.3934/dcds.2017050

[8]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[9]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[10]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[11]

Vladimir Georgiev, Atanas Stefanov, Mirko Tarulli. Smoothing-Strichartz estimates for the Schrodinger equation with small magnetic potential. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 771-786. doi: 10.3934/dcds.2007.17.771

[12]

Younghun Hong. Strichartz estimates for $N$-body Schrödinger operators with small potential interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5355-5365. doi: 10.3934/dcds.2017233

[13]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[14]

Yannick Sire, Christopher D. Sogge, Chengbo Wang. The Strauss conjecture on negatively curved backgrounds. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7081-7099. doi: 10.3934/dcds.2019296

[15]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[16]

Raffaela Capitanelli, Maria Agostina Vivaldi. Uniform weighted estimates on pre-fractal domains. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1969-1985. doi: 10.3934/dcdsb.2014.19.1969

[17]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[18]

David Cruz-Uribe, SFO, José María Martell, Carlos Pérez. Sharp weighted estimates for approximating dyadic operators. Electronic Research Announcements, 2010, 17: 12-19. doi: 10.3934/era.2010.17.12

[19]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[20]

Haruya Mizutani. Strichartz estimates for Schrödinger equations with variable coefficients and unbounded potentials II. Superquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2177-2210. doi: 10.3934/cpaa.2014.13.2177

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (46)
  • HTML views (95)
  • Cited by (0)

Other articles
by authors

[Back to Top]