August  2020, 40(8): 5001-5017. doi: 10.3934/dcds.2020209

Blowup results and concentration in focusing Schrödinger-Hartree equation

School of Mathematics and Statistics, Jiaotong University, Xi'an, Shanxi 710049, China

* Corresponding author: Liquan Mei

Received  October 2019 Published  May 2020

Fund Project: The work is partially supported by Science Challenge Project, No. TZ2016002

This paper is concerned with the Cauchy problem of the Schrödinger-Hartree equation. Applying the profile decomposition of bounded sequence in $ \dot{H}^1(\mathbb{R}^N)\cap\dot{H}^{S_c}(\mathbb{R}^N) $ and corresponding variational structure, a refined Gagliardo-Nirenberg inequality is established and the sharp constant for this inequality is deduced. Secondly, via construction and analysis of some invariant manifolds, we derive a different criterion of global existence and blowup results. Under the discussion of Bootstrap argument, we additionally obtain other sufficient condition for global existence. Finally, A compactness result is applied to show that the blowup solutions with bounded $ \dot{H}^{S_c} $ norm definitely have concentration properties related to a fixed $ \dot{H}^{S_c} $ norm of certain standing waves.

Citation: Yingying Xie, Jian Su, Liquan Mei. Blowup results and concentration in focusing Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5001-5017. doi: 10.3934/dcds.2020209
References:
[1]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys, 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[3]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Physica. D, 227 (2007), 142-148.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[4]

B. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential, Nonlinear. Anal. Real. World. Appl, 31 (2016), 132-145.  doi: 10.1016/j.nonrwa.2016.01.012.  Google Scholar

[5]

B. Feng and Y. Cai, Concentration for blow-up solutions of the Davey-Stewartson system in $\mathbb{R}^3$, Nonlinear. Anal. Real. World. Appl, 26 (2015), 330-342.  doi: 10.1016/j.nonrwa.2015.06.003.  Google Scholar

[6]

B. H. Feng and X. Yuan, The global well-posedness and blow-up solutions for the generalized Choquard equation, Evol. Equ. Control. Theory, 4 (2015), 281-296.   Google Scholar

[7]

B. H. Feng and H. H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl, 75 (2018), 2499-2507.  doi: 10.1016/j.camwa.2017.12.025.  Google Scholar

[8]

J. Fröehlich and E. Lenzmann, Mean-field limit of quantum bose gases and nonlinear Hartree equation, in Seminaire EDP, Ecole Polytechnique, (2004), 2003–2004.  Google Scholar

[9]

H. Genev and G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903-923.  doi: 10.3934/dcdss.2012.5.903.  Google Scholar

[10]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations.I. The Cauchy problem, general case, J. Funct. Anal, 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[11]

R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys, 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[12]

P. L. Kelley, Self focusing of optical beams, Phys. Rev. Lett, 15 (1965), 1005-1008.  doi: 10.1109/IQEC.2005.1561150.  Google Scholar

[13]

E. Lieb, Analysis, in Graduate Studies in Mathematics, American Mathematical Society, 2001. Google Scholar

[14]

P. L. Lions, The Choquard equation and related questions, Nonlinear. Anal, 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[15]

C. MiaoG. Xu and L. Zhao, On the blow up phenomenon for the $L^2$-critical focusing Hartree equation in $R^3$, Colloq. Math, 119 (2010), 23-50.  doi: 10.4064/cm119-1-2.  Google Scholar

[16]

V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal, 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[17]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[18]

S. Pekar, Untersuchung über Die Elektronentheorie Der Kristalle, Akademie-Verlag, Berlin, 1954. Google Scholar

[19]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal, 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[20]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys, 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[21]

Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equation, Nonlinear Ann. Inst. Henri. Poincaré Physique Théorique, 43 (1985), 321-347.   Google Scholar

[22]

Y. J. Wang, Strong instability of standing waves for Hartree equation with harmonic potential, Physica. D, 237 (2008), 998-1005.  doi: 10.1016/j.physd.2007.11.018.  Google Scholar

[23]

X. Wang, X. M. Sun and W. H. Lv, Orbital stability of generalized Choquard equation, Bound. Value Probl, 2016 (2016), Paper No. 190, 8 pp. doi: 10.1186/s13661-016-0697-1.  Google Scholar

[24]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Commun. Math. Phys, 87 (1982/83), 567-576.   Google Scholar

[25]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 909-912.   Google Scholar

[26]

S. H. Zhu, On the Davey-Stewartson system with competing nonlinearities, J. Math. Phys, 57 (2016), 031501, 13pp. doi: 10.1063/1.4942633.  Google Scholar

[27]

S. H. Zhu, Dynamical Properties of Blow-Up Solutions to Nonlinear Schrödinger Equations, Ph.D. thesis (in Chinese), Sichuan University, 2011. Google Scholar

show all references

References:
[1]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[2]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys, 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[3]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation, Physica. D, 227 (2007), 142-148.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[4]

B. Feng, Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential, Nonlinear. Anal. Real. World. Appl, 31 (2016), 132-145.  doi: 10.1016/j.nonrwa.2016.01.012.  Google Scholar

[5]

B. Feng and Y. Cai, Concentration for blow-up solutions of the Davey-Stewartson system in $\mathbb{R}^3$, Nonlinear. Anal. Real. World. Appl, 26 (2015), 330-342.  doi: 10.1016/j.nonrwa.2015.06.003.  Google Scholar

[6]

B. H. Feng and X. Yuan, The global well-posedness and blow-up solutions for the generalized Choquard equation, Evol. Equ. Control. Theory, 4 (2015), 281-296.   Google Scholar

[7]

B. H. Feng and H. H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation, Comput. Math. Appl, 75 (2018), 2499-2507.  doi: 10.1016/j.camwa.2017.12.025.  Google Scholar

[8]

J. Fröehlich and E. Lenzmann, Mean-field limit of quantum bose gases and nonlinear Hartree equation, in Seminaire EDP, Ecole Polytechnique, (2004), 2003–2004.  Google Scholar

[9]

H. Genev and G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903-923.  doi: 10.3934/dcdss.2012.5.903.  Google Scholar

[10]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations.I. The Cauchy problem, general case, J. Funct. Anal, 32 (1979), 1-32.  doi: 10.1016/0022-1236(79)90076-4.  Google Scholar

[11]

R. T. Glassey, On the blowing up of solution to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys, 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[12]

P. L. Kelley, Self focusing of optical beams, Phys. Rev. Lett, 15 (1965), 1005-1008.  doi: 10.1109/IQEC.2005.1561150.  Google Scholar

[13]

E. Lieb, Analysis, in Graduate Studies in Mathematics, American Mathematical Society, 2001. Google Scholar

[14]

P. L. Lions, The Choquard equation and related questions, Nonlinear. Anal, 4 (1980), 1063-1072.  doi: 10.1016/0362-546X(80)90016-4.  Google Scholar

[15]

C. MiaoG. Xu and L. Zhao, On the blow up phenomenon for the $L^2$-critical focusing Hartree equation in $R^3$, Colloq. Math, 119 (2010), 23-50.  doi: 10.4064/cm119-1-2.  Google Scholar

[16]

V. Moroz and J. V. Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal, 265 (2013), 153-184.  doi: 10.1016/j.jfa.2013.04.007.  Google Scholar

[17]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[18]

S. Pekar, Untersuchung über Die Elektronentheorie Der Kristalle, Akademie-Verlag, Berlin, 1954. Google Scholar

[19]

W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal, 41 (1981), 110-133.  doi: 10.1016/0022-1236(81)90063-X.  Google Scholar

[20]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys, 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[21]

Y. Tsutsumi, Scattering problem for nonlinear Schrödinger equation, Nonlinear Ann. Inst. Henri. Poincaré Physique Théorique, 43 (1985), 321-347.   Google Scholar

[22]

Y. J. Wang, Strong instability of standing waves for Hartree equation with harmonic potential, Physica. D, 237 (2008), 998-1005.  doi: 10.1016/j.physd.2007.11.018.  Google Scholar

[23]

X. Wang, X. M. Sun and W. H. Lv, Orbital stability of generalized Choquard equation, Bound. Value Probl, 2016 (2016), Paper No. 190, 8 pp. doi: 10.1186/s13661-016-0697-1.  Google Scholar

[24]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Commun. Math. Phys, 87 (1982/83), 567-576.   Google Scholar

[25]

V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972), 909-912.   Google Scholar

[26]

S. H. Zhu, On the Davey-Stewartson system with competing nonlinearities, J. Math. Phys, 57 (2016), 031501, 13pp. doi: 10.1063/1.4942633.  Google Scholar

[27]

S. H. Zhu, Dynamical Properties of Blow-Up Solutions to Nonlinear Schrödinger Equations, Ph.D. thesis (in Chinese), Sichuan University, 2011. Google Scholar

Figure 1.  Comparison of energy-mass
Figure 2.  Comparison of $ H^1 $ norm
[1]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[2]

Carlos Banquet, Élder J. Villamizar-Roa. On the management fourth-order Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2020, 9 (3) : 865-889. doi: 10.3934/eect.2020037

[3]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[4]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[5]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

[6]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[7]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[8]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[9]

Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099

[10]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[11]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[12]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[13]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[14]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[15]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[16]

Teresa D'Aprile. Some existence and concentration results for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2002, 1 (4) : 457-474. doi: 10.3934/cpaa.2002.1.457

[17]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[18]

Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094

[19]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[20]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (89)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]