August  2020, 40(8): 5047-5077. doi: 10.3934/dcds.2020211

Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received  December 2019 Published  May 2020

In this paper, we consider a semi-linear elliptic equation in $ \mathbb{R}^2 $ with the nonlinear exponent approaching infinity. We study asymptotic behavior of sign-changing once radial solutions obtained by Bartsch-Willem in [3] and [16]. Assuming $ u_{p}(0)>0 $, we prove that a suitable rescaling of the positive part $ u^+_{p} $ converges to the unique regular solution of Liouville equation in $ \mathbb{R}^2 $, while a suitable rescaling of the negative part $ u^-_{p} $ converges to a solution of a singular Liouville equation in $ \mathbb{R}^2 $. We also obtain the asymptotic value of the $ L^\infty $-norms of $ u^-_{p} $ and $ u^+_{p} $. Moreover, we show that $ pu_p $ blow up at the origin and $ pu_p $ convergence to the fundamental solution of $ -\Delta +1 $ in $ \mathbb{R}^2 $ (up to a multiplier).

Citation: Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211
References:
[1]

Ad imurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132 (2004), 1013-1019.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar

[2]

W. W. AoJ. C. Wei and W. Yao, Uniqueness and nondegeneracy of sign-changing radial solution to an almost critical elliptic problem, Adv. Differential Equations, 21 (2016), 1049-1084.   Google Scholar

[3]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\mathbb{R}^N$, Arch. Rational Mech. Anal., 124 (1993), 261-276.  doi: 10.1007/BF00953069.  Google Scholar

[4]

M. Ben AyedK. El Mehdi and M. Grossi, Asymptotic behavior of least energy solutions of a biharmonic equation in dimension four, Indiana Univ. Math. J., 55 (2006), 1723-1749.  doi: 10.1512/iumj.2006.55.2723.  Google Scholar

[5]

H. Berestyeki and P. J. Lions, Nonlinear scalar field equations I, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[6]

K. El Mehdi and M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud., 4 (2004), 15-36.  doi: 10.1515/ans-2004-0102.  Google Scholar

[7]

M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus, J. Differential Equations, 223 (2006), 96-111.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar

[8]

M. GrossiC. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations, Indiana Univ. Math. J., 101 (2014), 735-754.  doi: 10.1016/j.matpur.2013.06.011.  Google Scholar

[9]

I. Ianni and A. Saldana, Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems, https://arxiv.org/abs/1908.10503. Google Scholar

[10]

F. Pacella and D. Salazar, Asymptotic behaviour of sign changing radial solutions of Lane Emden problems in the annulus, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 793-805.  doi: 10.3934/dcdss.2014.7.793.  Google Scholar

[11]

X. B. Pan and X. F. Wang, Blow-up behavior of ground states of semilinear elliptic equations in Rn involving critical Sobolev exponents, J. Differential Equations, 9 (1992), 78-107.  doi: 10.1016/0022-0396(92)90136-B.  Google Scholar

[12]

X. F. Ren and J. C. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343 (1994), 749-763.  doi: 10.1090/S0002-9947-1994-1232190-7.  Google Scholar

[13]

X. F. Ren and J. C. Wei, On a semilinear elliptic equation in $\mathbb{R}^2$ when the exponnet approaches infinity, J. Math. Anal. Appl., 189 (1995), 179-193.  doi: 10.1006/jmaa.1995.1011.  Google Scholar

[14]

S. Santra and J. C. Wei, Asymptotic behavior of solutions of a biharmonic Dirichlet problem with large exponents, J. Anal. Math., 115 (2011), 1-31.  doi: 10.1007/s11854-011-0021-z.  Google Scholar

[15]

S. Tanaka, Uniqueness of sign-changing radial solutions for $\Delta u-u+\left\vert{u}\right\vert^{p-1}u = 0$ in some ball and annulus, J. Math. Anal. Appl., 439 (2016), 154-170.  doi: 10.1016/j.jmaa.2016.02.036.  Google Scholar

[16]

M. Willem, Mninmax Theorem, Birkhäuser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

Ad imurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132 (2004), 1013-1019.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar

[2]

W. W. AoJ. C. Wei and W. Yao, Uniqueness and nondegeneracy of sign-changing radial solution to an almost critical elliptic problem, Adv. Differential Equations, 21 (2016), 1049-1084.   Google Scholar

[3]

T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\mathbb{R}^N$, Arch. Rational Mech. Anal., 124 (1993), 261-276.  doi: 10.1007/BF00953069.  Google Scholar

[4]

M. Ben AyedK. El Mehdi and M. Grossi, Asymptotic behavior of least energy solutions of a biharmonic equation in dimension four, Indiana Univ. Math. J., 55 (2006), 1723-1749.  doi: 10.1512/iumj.2006.55.2723.  Google Scholar

[5]

H. Berestyeki and P. J. Lions, Nonlinear scalar field equations I, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[6]

K. El Mehdi and M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud., 4 (2004), 15-36.  doi: 10.1515/ans-2004-0102.  Google Scholar

[7]

M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus, J. Differential Equations, 223 (2006), 96-111.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar

[8]

M. GrossiC. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations, Indiana Univ. Math. J., 101 (2014), 735-754.  doi: 10.1016/j.matpur.2013.06.011.  Google Scholar

[9]

I. Ianni and A. Saldana, Sharp asymptotic behavior of radial solutions of some planar semilinear elliptic problems, https://arxiv.org/abs/1908.10503. Google Scholar

[10]

F. Pacella and D. Salazar, Asymptotic behaviour of sign changing radial solutions of Lane Emden problems in the annulus, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 793-805.  doi: 10.3934/dcdss.2014.7.793.  Google Scholar

[11]

X. B. Pan and X. F. Wang, Blow-up behavior of ground states of semilinear elliptic equations in Rn involving critical Sobolev exponents, J. Differential Equations, 9 (1992), 78-107.  doi: 10.1016/0022-0396(92)90136-B.  Google Scholar

[12]

X. F. Ren and J. C. Wei, On a two-dimensional elliptic problem with large exponent in nonlinearity, Trans. Amer. Math. Soc., 343 (1994), 749-763.  doi: 10.1090/S0002-9947-1994-1232190-7.  Google Scholar

[13]

X. F. Ren and J. C. Wei, On a semilinear elliptic equation in $\mathbb{R}^2$ when the exponnet approaches infinity, J. Math. Anal. Appl., 189 (1995), 179-193.  doi: 10.1006/jmaa.1995.1011.  Google Scholar

[14]

S. Santra and J. C. Wei, Asymptotic behavior of solutions of a biharmonic Dirichlet problem with large exponents, J. Anal. Math., 115 (2011), 1-31.  doi: 10.1007/s11854-011-0021-z.  Google Scholar

[15]

S. Tanaka, Uniqueness of sign-changing radial solutions for $\Delta u-u+\left\vert{u}\right\vert^{p-1}u = 0$ in some ball and annulus, J. Math. Anal. Appl., 439 (2016), 154-170.  doi: 10.1016/j.jmaa.2016.02.036.  Google Scholar

[16]

M. Willem, Mninmax Theorem, Birkhäuser, Berlin, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[2]

Dongho Chae. On the blow-up problem for the Euler equations and the Liouville type results in the fluid equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1139-1150. doi: 10.3934/dcdss.2013.6.1139

[3]

Frank Merle, Hatem Zaag. O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 435-450. doi: 10.3934/dcds.2002.8.435

[4]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[5]

Jorge A. Esquivel-Avila. Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28 (1) : 347-367. doi: 10.3934/era.2020020

[6]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[7]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[8]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020391

[9]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[10]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[11]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[12]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[13]

Ming Lu, Yi Du, Zheng-An Yao. Blow-up phenomena for the 3D compressible MHD equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1835-1855. doi: 10.3934/dcds.2012.32.1835

[14]

Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669

[15]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[16]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020082

[17]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[18]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[19]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[20]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (87)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]