August  2020, 40(8): 5079-5103. doi: 10.3934/dcds.2020212

On a discrete self-organized-criticality finite time result

1. 

Worcester Polytechnic Institute, MA, USA

2. 

Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Italy

Received  February 2020 Published  May 2020

In this paper we deal with theoretical and numerical aspects of some nonlinear problems related to sandpile models. We introduce a purely discrete model for infinitely many particles interacting according to a toppling process on a uniform two-dimensional grid and prove the convergence of the solutions to a differential initial value problem.

Citation: Umberto Mosco, Maria Agostina Vivaldi. On a discrete self-organized-criticality finite time result. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5079-5103. doi: 10.3934/dcds.2020212
References:
[1]

G. AronssonL. C. Evans and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations, 131 (1996), 304-335.  doi: 10.1006/jdeq.1996.0166.  Google Scholar

[2]

P. BakC. Tang and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A (3), 38 (1988), 364-374.  doi: 10.1103/PhysRevA.38.364.  Google Scholar

[3]

P. Bántay and I. M. Jánosi, Avalanche dynamics from anomalous diffusion, Phys. Rev. Lett., 68 (1992), 2058-2061.   Google Scholar

[4]

V. Barbu, Nonlinear Semi-Groups and Differential Equations in Banach Spaces, Noordhoff: Leyden, 1976.  Google Scholar

[5]

V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer: NewYork, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[6]

V. Barbu, Self-organized criticality and convergence to equilibrium of solutions to nonlinear diffusion problems, Annual Reviews in Control, JARAP, 340 (2010), 52-61.   Google Scholar

[7]

V. Barbu, Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one, Mathematical Methods in the Applied Sciences, 36 (2013), 1726-1733.  doi: 10.1002/mma.2718.  Google Scholar

[8]

V. BarbuG. Da Prato and M. Röckner, Stochastic porous media equations and self- organized criticality, Comm. Math. Phys., 285 (2009), 901-923.  doi: 10.1007/s00220-008-0651-x.  Google Scholar

[9]

J. W. Barrett and L. Prigozhin, Sandpiles and superconductors: Nonconforming linear finite element approximations for mixed formulations of quasi-variational, IMA J. Numer. Anal., 35 (2015), 1-38.  doi: 10.1093/imanum/drt062.  Google Scholar

[10]

H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Ed. L.Nachbin North-Hollands/ Americal Elsevier, 1973.  Google Scholar

[11]

H. Brézis, Analisi funzionale, Ed. Liguori 1986. Google Scholar

[12]

H. Brézis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383.  doi: 10.1007/BF02798683.  Google Scholar

[13]

J. M. CarlsonJ. T. ChayesE. R. Grannan and G. H. Swindle, Self-organized criticality in sandpiles: Nature of the critical phenomenon, Phys. Rev. A (3), 42 (1990), 2467-2470.  doi: 10.1103/PhysRevA.42.2467.  Google Scholar

[14]

J. M. Carlson and G. H. Swindle, Self-organized criticality: Sandpiles, singularities, and scaling, Proc. Nat. Acad. Sci. USA, 92 (1995), 6712-6719.  doi: 10.1073/pnas.92.15.6712.  Google Scholar

[15]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.  doi: 10.2307/2373376.  Google Scholar

[16]

M. Creutz, Abelian sandpiles, Nucl. Phys. B (Proc. Suppl.), 20 (1991), 758-761.   Google Scholar

[17]

D. Dahr, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64 (1990), 1613-1616.  doi: 10.1103/PhysRevLett.64.1613.  Google Scholar

[18]

L. C. EvansM. Feldman and R. F. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137 (1997), 166-209.  doi: 10.1006/jdeq.1997.3243.  Google Scholar

[19]

B. Gess, Finite time extinction for stochastic sign fast diffusion and self-organized criticality, Comm. Math. Phys., 335 (2015), 309-344.  doi: 10.1007/s00220-014-2225-4.  Google Scholar

[20]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[21]

U. Mosco, An Introduction to the approximate solution of variational inequalities, In: Constructive Aspects of Functional Analysis. Cime Summer Schools Erice, (ed. G. Geymonat), Springer, 57 (1971), 497–685. Google Scholar

[22]

U. Mosco, Finite -time self - organized - criticality on synchronized infinite grids, SIAM J. Math. Anal., 50 (2018), 2409-2440.  doi: 10.1137/17M1122955.  Google Scholar

[23]

U. Mosco and M. A. Vivaldi, On the external approximation of Sobolev spaces by M–convergence, to appear. Google Scholar

show all references

References:
[1]

G. AronssonL. C. Evans and Y. Wu, Fast/slow diffusion and growing sandpiles, J. Differential Equations, 131 (1996), 304-335.  doi: 10.1006/jdeq.1996.0166.  Google Scholar

[2]

P. BakC. Tang and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A (3), 38 (1988), 364-374.  doi: 10.1103/PhysRevA.38.364.  Google Scholar

[3]

P. Bántay and I. M. Jánosi, Avalanche dynamics from anomalous diffusion, Phys. Rev. Lett., 68 (1992), 2058-2061.   Google Scholar

[4]

V. Barbu, Nonlinear Semi-Groups and Differential Equations in Banach Spaces, Noordhoff: Leyden, 1976.  Google Scholar

[5]

V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer: NewYork, 2010. doi: 10.1007/978-1-4419-5542-5.  Google Scholar

[6]

V. Barbu, Self-organized criticality and convergence to equilibrium of solutions to nonlinear diffusion problems, Annual Reviews in Control, JARAP, 340 (2010), 52-61.   Google Scholar

[7]

V. Barbu, Self-organized criticality of cellular automata model; absorbtion in finite-time of supercritical region into the critical one, Mathematical Methods in the Applied Sciences, 36 (2013), 1726-1733.  doi: 10.1002/mma.2718.  Google Scholar

[8]

V. BarbuG. Da Prato and M. Röckner, Stochastic porous media equations and self- organized criticality, Comm. Math. Phys., 285 (2009), 901-923.  doi: 10.1007/s00220-008-0651-x.  Google Scholar

[9]

J. W. Barrett and L. Prigozhin, Sandpiles and superconductors: Nonconforming linear finite element approximations for mixed formulations of quasi-variational, IMA J. Numer. Anal., 35 (2015), 1-38.  doi: 10.1093/imanum/drt062.  Google Scholar

[10]

H. Brézis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Ed. L.Nachbin North-Hollands/ Americal Elsevier, 1973.  Google Scholar

[11]

H. Brézis, Analisi funzionale, Ed. Liguori 1986. Google Scholar

[12]

H. Brézis and A. Pazy, Accretive sets and differential equations in Banach spaces, Israel J. Math., 8 (1970), 367-383.  doi: 10.1007/BF02798683.  Google Scholar

[13]

J. M. CarlsonJ. T. ChayesE. R. Grannan and G. H. Swindle, Self-organized criticality in sandpiles: Nature of the critical phenomenon, Phys. Rev. A (3), 42 (1990), 2467-2470.  doi: 10.1103/PhysRevA.42.2467.  Google Scholar

[14]

J. M. Carlson and G. H. Swindle, Self-organized criticality: Sandpiles, singularities, and scaling, Proc. Nat. Acad. Sci. USA, 92 (1995), 6712-6719.  doi: 10.1073/pnas.92.15.6712.  Google Scholar

[15]

M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.  doi: 10.2307/2373376.  Google Scholar

[16]

M. Creutz, Abelian sandpiles, Nucl. Phys. B (Proc. Suppl.), 20 (1991), 758-761.   Google Scholar

[17]

D. Dahr, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64 (1990), 1613-1616.  doi: 10.1103/PhysRevLett.64.1613.  Google Scholar

[18]

L. C. EvansM. Feldman and R. F. Gariepy, Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137 (1997), 166-209.  doi: 10.1006/jdeq.1997.3243.  Google Scholar

[19]

B. Gess, Finite time extinction for stochastic sign fast diffusion and self-organized criticality, Comm. Math. Phys., 335 (2015), 309-344.  doi: 10.1007/s00220-014-2225-4.  Google Scholar

[20]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math., 3 (1969), 510-585.  doi: 10.1016/0001-8708(69)90009-7.  Google Scholar

[21]

U. Mosco, An Introduction to the approximate solution of variational inequalities, In: Constructive Aspects of Functional Analysis. Cime Summer Schools Erice, (ed. G. Geymonat), Springer, 57 (1971), 497–685. Google Scholar

[22]

U. Mosco, Finite -time self - organized - criticality on synchronized infinite grids, SIAM J. Math. Anal., 50 (2018), 2409-2440.  doi: 10.1137/17M1122955.  Google Scholar

[23]

U. Mosco and M. A. Vivaldi, On the external approximation of Sobolev spaces by M–convergence, to appear. Google Scholar

[1]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[2]

Lih-Ing W. Roeger. Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 415-429. doi: 10.3934/dcdsb.2008.9.415

[3]

Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705

[4]

Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495

[5]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[6]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[7]

Dirk Helbing, Jan Siegmeier, Stefan Lämmer. Self-organized network flows. Networks & Heterogeneous Media, 2007, 2 (2) : 193-210. doi: 10.3934/nhm.2007.2.193

[8]

Boris Andreianov, Mostafa Bendahmane, Kenneth H. Karlsen, Charles Pierre. Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Networks & Heterogeneous Media, 2011, 6 (2) : 195-240. doi: 10.3934/nhm.2011.6.195

[9]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[10]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[11]

Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461

[12]

Stelian Ion, Gabriela Marinoschi. A self-organizing criticality mathematical model for contamination and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 383-405. doi: 10.3934/dcdsb.2017018

[13]

Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic & Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008

[14]

Patrick Flynn, Quinton Neville, Arnd Scheel. Self-organized clusters in diffusive run-and-tumble processes. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1187-1208. doi: 10.3934/dcdss.2020069

[15]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[16]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[17]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[18]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[19]

Manuela Caratozzolo, Santina Carnazza, Luigi Fortuna, Mattia Frasca, Salvatore Guglielmino, Giovanni Gurrieri, Giovanni Marletta. Self-organizing models of bacterial aggregation states. Mathematical Biosciences & Engineering, 2008, 5 (1) : 75-83. doi: 10.3934/mbe.2008.5.75

[20]

Allaberen Ashyralyev. Well-posedness of the modified Crank-Nicholson difference schemes in Bochner spaces. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 29-51. doi: 10.3934/dcdsb.2007.7.29

2018 Impact Factor: 1.143

Article outline

[Back to Top]