# American Institute of Mathematical Sciences

December  2020, 40(12): 6709-6745. doi: 10.3934/dcds.2020213

## Time dependent center manifold in PDEs

 1 Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China 2 School of Mathematics, Georgia Inst. of Technology, Atlanta GA, 30332, USA

Received  January 2019 Revised  February 2020 Published  May 2020

Fund Project: H. C. supported by CSC by the National Natural Science Foundation of China (Grant Nos. 11171185, 10871117), H.C. thanks G.T. for hospitality 2015-2016.
R. L. supported in part by NSF grant DMS 1800241.
This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while both authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2018 semester

We consider externally forced equations in an evolution form. Mathematically, these are skew systems driven by a finite dimensional dynamical system. Two very common cases included in our treatment are quasi-periodic forcing and forcing by a stochastic process. We allow that the evolution is a PDE and even that it is not well-posed and that it does not define a flow (not all initial conditions lead to a solution).

We first establish a general abstract theorem which, under suitable (spectral, non-degeneracy, smoothness, etc) assumptions, establishes the existence of a "time-dependent invariant manifold" (TDIM). These manifolds evolve with the forcing. They are such that the original equation is always tangent to a vector field in the manifold. Hence, for initial data in the TDIM, the original equation is equivalent to an ordinary differential equation. This allows us to define families of solutions of the full equation by studying the solutions of a finite dimensional system. Note that this strategy may apply even if the original equation is ill posed and does not admit solutions for arbitrary initial conditions (the TDIM selects initial conditions for which solutions exist). It also allows that the TDIM is infinite dimensional.

Secondly, we construct the center manifold for skew systems driven by the external forcing.

Thirdly, we present concrete applications of the abstract result to the differential equations whose linear operators are exponential trichotomy subject to quasi-periodic perturbations. The use of TDIM allows us to establish the existence of quasi-periodic solutions and to study the effect of resonances.

Citation: Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213
##### References:
 [1] R. Abraham and J. Robbin, Transversal Mappings and Flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967.  Google Scholar [2] A. Afendikov and A. Mielke, A spatial center manifold approach to a hydrodynamical problem with O(2) symmetry, in Dynamics, Bifurcation and Symmetry (Cargèse, 1993), vol. 437 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1994, 1–10. doi: 10.1007/978-94-011-0956-7_1.  Google Scholar [3] L. F. A. Arbogast, Du Calcul Des Derivations, Levraut, Strasbourg, 1800, Available freely from Google Books. Google Scholar [4] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar [5] T. Bartsch, J. M. Moix and S. Kawai, Time-dependent transition state theory, Advance in Chemical Physis, 140 (2008), 189-238.  doi: 10.1002/9780470371572.ch4.  Google Scholar [6] J. Bass, Les Fonctions Pseudo-aléatoires, Mémor. Sci. Math., Fasc. CLIII, Gauthier-Villars, Éditeur-Imprimeur-Libraire, Paris, 1962.  Google Scholar [7] P. W. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in Banach space, Mem. Amer. Math. Soc., 135 (1998), ⅷ+129pp. doi: 10.1090/memo/0645.  Google Scholar [8] M. Berti, KAM theory for partial differential equations, Anal. Theory Appl., 35 (2019), 235-267.  doi: 10.4208/ata.OA-0013.  Google Scholar [9] P. Boxler, How to construct stochastic center manifolds on the level of vector fields, in Lyapunov Exponents (Oberwolfach, 1990), vol. 1486 of Lecture Notes in Math., Springer, Berlin, 1991,141–158. doi: 10.1007/BFb0086664.  Google Scholar [10] M. J. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity, 25 (2012), 1997-2026.  doi: 10.1088/0951-7715/25/7/1997.  Google Scholar [11] J. Carr, Applications of Centre Manifold Theory, vol. 35 of Applied Mathematical Sciences, Springer-Verlag, New York-Berlin, 1981.  Google Scholar [12] N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar [13] H. Cheng and R. de la Llave, Stable manifolds to bounded solutions in possibly ill-posed PDEs., J. Differ. Equations, 268 (2020), 4830-4899.  doi: 10.1016/j.jde.2019.10.042.  Google Scholar [14] H. Cheng and J. Si, Quasi-periodic solutions for the quasi-periodically forced cubic complex Ginzburg-Landau equation on ${\mathbb T}^d$, J. Math. Phys., 54 (2013), 082702, 27pp. doi: 10.1063/1.4817864.  Google Scholar [15] C. Chicone and Y. Latushkin, Center manifolds for infinite-dimensional nonautonomous differential equations, J. Differential Equations, 141 (1997), 356-399.  doi: 10.1006/jdeq.1997.3343.  Google Scholar [16] S.-N. Chow, W. Liu and Y. Yi, Center manifolds for invariant sets, J. Differential Equations, 168 (2000), 355–385, Special issue in celebration of Jack K. Hale's 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). doi: 10.1006/jdeq.2000.3890.  Google Scholar [17] S.-N. Chow, W. Liu and Y. Yi, Center manifolds for smooth invariant manifolds, Trans. Amer. Math. Soc., 352 (2000), 5179-5211.  doi: 10.1090/S0002-9947-00-02443-0.  Google Scholar [18] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, John Wiley & Sons, Inc., New York, 1965.  Google Scholar [19] S. L. Day, A Rigorous Numerical Method in Infinite Dimensions, ProQuest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)–Georgia Institute of Technology.  Google Scholar [20] R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys., 150 (1992), 289-320.  doi: 10.1007/BF02096662.  Google Scholar [21] R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2), 123 (1986), 537-611.  doi: 10.2307/1971334.  Google Scholar [22] R. de la Llave and J. D. Mireles James, Connecting orbits for compact infinite dimensional maps: Computer assisted proofs of existence, SIAM J. Appl. Dyn. Syst., 15 (2016), 1268-1323.  doi: 10.1137/15M1053608.  Google Scholar [23] R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynam. Systems, 5 (1999), 157-184.  doi: 10.3934/dcds.1999.5.157.  Google Scholar [24] R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differential Equations, 21 (2009), 371-415.  doi: 10.1007/s10884-009-9140-y.  Google Scholar [25] R. de la Llave and Y. Sire, An a posteriori kam theorem for whiskered tori in hamiltonian partial differential equations with applications to some ill-posed equations, Arch Rational Mech. Anal., 231 (2019), 971-1044.  doi: 10.1007/s00205-018-1293-6.  Google Scholar [26] R. de la Llave and A. Windsor, Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems, Ergodic Theory Dynam. Systems, 30 (2010), 1055-1100.  doi: 10.1017/S014338570900039X.  Google Scholar [27] J. Duan, An Introduction to Stochastic Dynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, New York, 2015.   Google Scholar [28] J.-P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem, Comm. Math. Phys., 136 (1991), 285–307, http://projecteuclid.org/euclid.cmp/1104202352. doi: 10.1007/BF02100026.  Google Scholar [29] G. Faye and A. Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc., 370 (2018), 5843-5885.  doi: 10.1090/tran/7190.  Google Scholar [30] J. A. Goldstein, Semigroups of Linear Operators & Applications, Dover Publications, Inc., Mineola, NY, 2017, Second edition of [MR0790497], Including transcriptions of five lectures from the 1989 workshop at Blaubeuren, Germany.  Google Scholar [31] J. Hadamard, Sur le module maximum d'une fonction et de ses derives, Bull. Soc. Math. France, 42 (1898), 68-72.   Google Scholar [32] J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.  Google Scholar [33] M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7.  Google Scholar [34] D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar [35] D. A. Jones and S. Shkoller, Persistence of invariant manifolds for nonlinear PDEs, Stud. Appl. Math., 102 (1999), 27-67.  doi: 10.1111/1467-9590.00103.  Google Scholar [36] J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, 4 (1988), 187-193.  doi: 10.4171/RMI/69.  Google Scholar [37] K. Kirchgässner and J. Scheurle, On the bounded solutions of a semilinear elliptic equation in a strip, J. Differential Equations, 32 (1979), 119-148.  doi: 10.1016/0022-0396(79)90055-X.  Google Scholar [38] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math., 1 (1983), 193-260.   Google Scholar [39] S. Krantz, Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1992 edition. doi: 10.1090/chel/340.  Google Scholar [40] O. E. Lanford III, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology: P roceedings of a Battelle Summer Institute (eds. I. Stakgold, D. D. Joseph and D. H. Sattinger), Springer-Verlag, Berlin, Lecture Notes in Mathematics, 322 (1973), 159–192. Google Scholar [41] J. Li, K. Lu and P. Bates, Normally hyperbolic invariant manifolds for random dynamical systems: Part Ⅰ–Persistence, Trans. Amer. Math. Soc., 365 (2013), 5933-5966.  doi: 10.1090/S0002-9947-2013-05825-4.  Google Scholar [42] A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), 51-66.  doi: 10.1002/mma.1670100105.  Google Scholar [43] A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, vol. 1489 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991, With applications to elliptic variational problems. doi: 10.1007/BFb0097544.  Google Scholar [44] A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Differential Equations, 110 (1994), 322-355.  doi: 10.1006/jdeq.1994.1070.  Google Scholar [45] A. Pazy, Semigroups of operators in Banach spaces, in Equadiff 82 (Würzburg, 1982), vol. 1017 of Lecture Notes in Math., Springer, Berlin, 1983,508–524. doi: 10.1007/BFb0103275.  Google Scholar [46] O. Perron, Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 29 (1929), 129-160.  doi: 10.1007/BF01180524.  Google Scholar [47] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅳ. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.  Google Scholar [48] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, vol. 143 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar [49] J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc., 289 (1985), 431-469.  doi: 10.1090/S0002-9947-1985-0783998-8.  Google Scholar [50] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.   Google Scholar [51] M. E. Taylor, Partial Differential Equations Ⅲ. Nonlinear Equations, vol. 117 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar [52] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, vol. 888 of Lecture Notes in Mathematics, North-Holland Publishing Co., Amsterdam-New York, 1981.  Google Scholar [53] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, in Dynamics Reported: Expositions in Dynamical Systems, vol. 1 of Dynam. Report. Expositions Dynam. Systems (N.S.), Springer, Berlin, 1992,125–163.  Google Scholar [54] L. Zhang and R. de la Llave, Transition state theory with quasi-periodic forcing, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 229-243.  doi: 10.1016/j.cnsns.2018.02.014.  Google Scholar

show all references

##### References:
 [1] R. Abraham and J. Robbin, Transversal Mappings and Flows, An appendix by Al Kelley, W. A. Benjamin, Inc., New York-Amsterdam, 1967.  Google Scholar [2] A. Afendikov and A. Mielke, A spatial center manifold approach to a hydrodynamical problem with O(2) symmetry, in Dynamics, Bifurcation and Symmetry (Cargèse, 1993), vol. 437 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1994, 1–10. doi: 10.1007/978-94-011-0956-7_1.  Google Scholar [3] L. F. A. Arbogast, Du Calcul Des Derivations, Levraut, Strasbourg, 1800, Available freely from Google Books. Google Scholar [4] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar [5] T. Bartsch, J. M. Moix and S. Kawai, Time-dependent transition state theory, Advance in Chemical Physis, 140 (2008), 189-238.  doi: 10.1002/9780470371572.ch4.  Google Scholar [6] J. Bass, Les Fonctions Pseudo-aléatoires, Mémor. Sci. Math., Fasc. CLIII, Gauthier-Villars, Éditeur-Imprimeur-Libraire, Paris, 1962.  Google Scholar [7] P. W. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in Banach space, Mem. Amer. Math. Soc., 135 (1998), ⅷ+129pp. doi: 10.1090/memo/0645.  Google Scholar [8] M. Berti, KAM theory for partial differential equations, Anal. Theory Appl., 35 (2019), 235-267.  doi: 10.4208/ata.OA-0013.  Google Scholar [9] P. Boxler, How to construct stochastic center manifolds on the level of vector fields, in Lyapunov Exponents (Oberwolfach, 1990), vol. 1486 of Lecture Notes in Math., Springer, Berlin, 1991,141–158. doi: 10.1007/BFb0086664.  Google Scholar [10] M. J. Capiński and C. Simó, Computer assisted proof for normally hyperbolic invariant manifolds, Nonlinearity, 25 (2012), 1997-2026.  doi: 10.1088/0951-7715/25/7/1997.  Google Scholar [11] J. Carr, Applications of Centre Manifold Theory, vol. 35 of Applied Mathematical Sciences, Springer-Verlag, New York-Berlin, 1981.  Google Scholar [12] N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal., 4 (1974/75), 17-37.  doi: 10.1080/00036817408839081.  Google Scholar [13] H. Cheng and R. de la Llave, Stable manifolds to bounded solutions in possibly ill-posed PDEs., J. Differ. Equations, 268 (2020), 4830-4899.  doi: 10.1016/j.jde.2019.10.042.  Google Scholar [14] H. Cheng and J. Si, Quasi-periodic solutions for the quasi-periodically forced cubic complex Ginzburg-Landau equation on ${\mathbb T}^d$, J. Math. Phys., 54 (2013), 082702, 27pp. doi: 10.1063/1.4817864.  Google Scholar [15] C. Chicone and Y. Latushkin, Center manifolds for infinite-dimensional nonautonomous differential equations, J. Differential Equations, 141 (1997), 356-399.  doi: 10.1006/jdeq.1997.3343.  Google Scholar [16] S.-N. Chow, W. Liu and Y. Yi, Center manifolds for invariant sets, J. Differential Equations, 168 (2000), 355–385, Special issue in celebration of Jack K. Hale's 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). doi: 10.1006/jdeq.2000.3890.  Google Scholar [17] S.-N. Chow, W. Liu and Y. Yi, Center manifolds for smooth invariant manifolds, Trans. Amer. Math. Soc., 352 (2000), 5179-5211.  doi: 10.1090/S0002-9947-00-02443-0.  Google Scholar [18] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, John Wiley & Sons, Inc., New York, 1965.  Google Scholar [19] S. L. Day, A Rigorous Numerical Method in Infinite Dimensions, ProQuest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)–Georgia Institute of Technology.  Google Scholar [20] R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems, Comm. Math. Phys., 150 (1992), 289-320.  doi: 10.1007/BF02096662.  Google Scholar [21] R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2), 123 (1986), 537-611.  doi: 10.2307/1971334.  Google Scholar [22] R. de la Llave and J. D. Mireles James, Connecting orbits for compact infinite dimensional maps: Computer assisted proofs of existence, SIAM J. Appl. Dyn. Syst., 15 (2016), 1268-1323.  doi: 10.1137/15M1053608.  Google Scholar [23] R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynam. Systems, 5 (1999), 157-184.  doi: 10.3934/dcds.1999.5.157.  Google Scholar [24] R. de la Llave, A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities, J. Dynam. Differential Equations, 21 (2009), 371-415.  doi: 10.1007/s10884-009-9140-y.  Google Scholar [25] R. de la Llave and Y. Sire, An a posteriori kam theorem for whiskered tori in hamiltonian partial differential equations with applications to some ill-posed equations, Arch Rational Mech. Anal., 231 (2019), 971-1044.  doi: 10.1007/s00205-018-1293-6.  Google Scholar [26] R. de la Llave and A. Windsor, Livšic theorems for non-commutative groups including diffeomorphism groups and results on the existence of conformal structures for Anosov systems, Ergodic Theory Dynam. Systems, 30 (2010), 1055-1100.  doi: 10.1017/S014338570900039X.  Google Scholar [27] J. Duan, An Introduction to Stochastic Dynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, New York, 2015.   Google Scholar [28] J.-P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem, Comm. Math. Phys., 136 (1991), 285–307, http://projecteuclid.org/euclid.cmp/1104202352. doi: 10.1007/BF02100026.  Google Scholar [29] G. Faye and A. Scheel, Center manifolds without a phase space, Trans. Amer. Math. Soc., 370 (2018), 5843-5885.  doi: 10.1090/tran/7190.  Google Scholar [30] J. A. Goldstein, Semigroups of Linear Operators & Applications, Dover Publications, Inc., Mineola, NY, 2017, Second edition of [MR0790497], Including transcriptions of five lectures from the 1989 workshop at Blaubeuren, Germany.  Google Scholar [31] J. Hadamard, Sur le module maximum d'une fonction et de ses derives, Bull. Soc. Math. France, 42 (1898), 68-72.   Google Scholar [32] J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.  Google Scholar [33] M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011. doi: 10.1007/978-0-85729-112-7.  Google Scholar [34] D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840 of Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.  Google Scholar [35] D. A. Jones and S. Shkoller, Persistence of invariant manifolds for nonlinear PDEs, Stud. Appl. Math., 102 (1999), 27-67.  doi: 10.1111/1467-9590.00103.  Google Scholar [36] J.-L. Journé, A regularity lemma for functions of several variables, Rev. Mat. Iberoamericana, 4 (1988), 187-193.  doi: 10.4171/RMI/69.  Google Scholar [37] K. Kirchgässner and J. Scheurle, On the bounded solutions of a semilinear elliptic equation in a strip, J. Differential Equations, 32 (1979), 119-148.  doi: 10.1016/0022-0396(79)90055-X.  Google Scholar [38] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math., 1 (1983), 193-260.   Google Scholar [39] S. Krantz, Function Theory of Several Complex Variables, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1992 edition. doi: 10.1090/chel/340.  Google Scholar [40] O. E. Lanford III, Bifurcation of periodic solutions into invariant tori: The work of Ruelle and Takens, in Nonlinear Problems in the Physical Sciences and Biology: P roceedings of a Battelle Summer Institute (eds. I. Stakgold, D. D. Joseph and D. H. Sattinger), Springer-Verlag, Berlin, Lecture Notes in Mathematics, 322 (1973), 159–192. Google Scholar [41] J. Li, K. Lu and P. Bates, Normally hyperbolic invariant manifolds for random dynamical systems: Part Ⅰ–Persistence, Trans. Amer. Math. Soc., 365 (2013), 5933-5966.  doi: 10.1090/S0002-9947-2013-05825-4.  Google Scholar [42] A. Mielke, Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., 10 (1988), 51-66.  doi: 10.1002/mma.1670100105.  Google Scholar [43] A. Mielke, Hamiltonian and Lagrangian Flows on Center Manifolds, vol. 1489 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991, With applications to elliptic variational problems. doi: 10.1007/BFb0097544.  Google Scholar [44] A. Mielke, Essential manifolds for an elliptic problem in an infinite strip, J. Differential Equations, 110 (1994), 322-355.  doi: 10.1006/jdeq.1994.1070.  Google Scholar [45] A. Pazy, Semigroups of operators in Banach spaces, in Equadiff 82 (Würzburg, 1982), vol. 1017 of Lecture Notes in Math., Springer, Berlin, 1983,508–524. doi: 10.1007/BFb0103275.  Google Scholar [46] O. Perron, Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 29 (1929), 129-160.  doi: 10.1007/BF01180524.  Google Scholar [47] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅳ. Analysis of Operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978.  Google Scholar [48] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, vol. 143 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.  Google Scholar [49] J. Sijbrand, Properties of center manifolds, Trans. Amer. Math. Soc., 289 (1985), 431-469.  doi: 10.1090/S0002-9947-1985-0783998-8.  Google Scholar [50] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.   Google Scholar [51] M. E. Taylor, Partial Differential Equations Ⅲ. Nonlinear Equations, vol. 117 of Applied Mathematical Sciences, 2nd edition, Springer, New York, 2011. doi: 10.1007/978-1-4419-7049-7.  Google Scholar [52] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, vol. 888 of Lecture Notes in Mathematics, North-Holland Publishing Co., Amsterdam-New York, 1981.  Google Scholar [53] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, in Dynamics Reported: Expositions in Dynamical Systems, vol. 1 of Dynam. Report. Expositions Dynam. Systems (N.S.), Springer, Berlin, 1992,125–163.  Google Scholar [54] L. Zhang and R. de la Llave, Transition state theory with quasi-periodic forcing, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 229-243.  doi: 10.1016/j.cnsns.2018.02.014.  Google Scholar
 [1] Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 [2] Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507 [3] Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 [4] Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335 [5] Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2011, 5 (1) : 1-17. doi: 10.3934/ipi.2011.5.1 [6] Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011 [7] Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009 [8] Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289 [9] Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971 [10] Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks & Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014 [11] Guji Tian, Xu-Jia Wang. Partial regularity for elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 899-913. doi: 10.3934/dcds.2010.28.899 [12] Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 [13] Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 [14] Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 [15] Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155 [16] T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167 [17] Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1345-1360. doi: 10.3934/cpaa.2011.10.1345 [18] A. Domoshnitsky. About maximum principles for one of the components of solution vector and stability for systems of linear delay differential equations. Conference Publications, 2011, 2011 (Special) : 373-380. doi: 10.3934/proc.2011.2011.373 [19] B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609 [20] Giuseppe Riey. Regularity and weak comparison principles for double phase quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4863-4873. doi: 10.3934/dcds.2019198

2019 Impact Factor: 1.338

Article outline