
-
Previous Article
A posteriori error estimates for self-similar solutions to the Euler equations
- DCDS Home
- This Issue
-
Next Article
Minimal collision arcs asymptotic to central configurations
Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations
1. | University of Illinois at Chicago, Department of Mathematics, Statistics and Computer Science, 851 South Morgan Street, Chicago, IL 60607, USA |
2. | University of Valladolid, Applied Mathematics Department, P/ Belen 15, 47011, Valladolid, Spain |
3. | Victoria University of Wellington, School of Mathematics and Statistics, PO Box 600, Wellington 6140, New Zealand |
Considered here are systems of partial differential equations arising in internal wave theory. The systems are asymptotic models describing the two-way propagation of long-crested interfacial waves in the Benjamin-Ono and the Intermediate Long-Wave regimes. Of particular interest will be solitary-wave solutions of these systems. Several methods of numerically approximating these solitary waves are put forward and their performance compared. The output of these schemes is then used to better understand some of the fundamental properties of these solitary waves.
The spatial structure of the systems of equations is non-local, like that of their one-dimensional, unidirectional relatives, the Benjamin-Ono and the Intermediate Long-Wave equations. As the non-local aspect is comprised of Fourier multiplier operators, this suggests the use of spectral methods for the discretization in space. Three iterative methods are proposed and implemented for approximating traveling-wave solutions. In addition to Newton-type and Petviashvili iterations, an interesting wrinkle on the usual Petviashvili method is put forward which appears to offer advantages over the other two techniques. The performance of these methods is checked in several ways, including using the approximations they generate as initial data in time-dependent codes for obtaining solutions of the Cauchy problem.
Attention is then turned to determining speed versus amplitude relations of these families of waves and their dependence upon parameters in the models. There are also provided comparisons between the unidirectional and bidirectional solitary waves. It deserves remark that while small-amplitude solitary-wave solutions of these systems are known to exist, our results suggest the amplitude restriction in the theory is artificial.
References:
[1] |
L. Abdelouhab, J. L. Bona, M. Felland and J.-C. Saut,
Nonlocal models for nonlinear dispersive waves, Physica D, 40 (1989), 360-392.
doi: 10.1016/0167-2789(89)90050-X. |
[2] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu,
Comparisons between the BBM equation and a Boussinesq system, Advances Differential Eq., 11 (2006), 121-166.
|
[3] |
J. P. Albert and J. L. Bona,
Comparisons between model equations for long waves, J. Nonlinear Sci., 1 (1991), 345-374.
doi: 10.1007/BF01238818. |
[4] |
J. P. Albert and J. L. Bona,
Total positivity and the stability of internal waves in fluids of finite depth, IMA J. Applied Math., 46 (1991), 1-19.
doi: 10.1093/imamat/46.1-2.1. |
[5] |
J. P. Albert, J. L. Bona and J.-M. Restrepo,
Solitary-wave solutions of the Benjamin equation, SIAM J. Appl. Math., 59 (1999), 2139-2161.
doi: 10.1137/S0036139997321682. |
[6] |
J. P. Albert, J. L. Bona and J.-C. Saut,
Model equations for waves in stratified fluids, Proc. Royal Soc. London, Series A, 453 (1997), 1233-1260.
doi: 10.1098/rspa.1997.0068. |
[7] |
J. P. Albert and J. F. Toland,
On the exact solutions of the intermediate long-wave equation, Differential Integral Eq., 7 (1994), 601-612.
|
[8] |
M. H. Alford et al., The formation and fate of internal waves in the South China Sea, Nature, 521 (2015), 65-69. Google Scholar |
[9] |
J. Álvarez and A. Durán,
An extended Petviashvili method for the numerical generation of traveling and localized waves, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 2272-2283.
doi: 10.1016/j.cnsns.2013.12.004. |
[10] |
J. Álvarez and A. Durán,
Petviashvili type methods for traveling wave computations: Ⅰ. Analysis of convergence, J. Comput. Appl. Math., 266 (2014), 39-51.
doi: 10.1016/j.cam.2014.01.015. |
[11] |
J. Álvarez and A. Durán,
Petviashvili type methods for traveling wave computations: Ⅱ. Acceleration with vector extrapolation methods, Math. Comput. Simul., 123 (2016), 19-36.
doi: 10.1016/j.matcom.2015.10.015. |
[12] |
D. M. Ambrose, J. L. Bona and T. Milgrom, Global solutions and ill-posedness for the Kaup system and related Boussinesq systems, Indiana U. Math. J, 68 (2019), 1173–1198.
doi: 10.1512/iumj.2019.68.7721. |
[13] |
C. J. Amick and J. F. Toland,
Uniqueness of Benjamin's solitary wave solution of the Benjamin-Ono equation, IMA J. Appl. Math., 46 (1991), 21-28.
doi: 10.1093/imamat/46.1-2.21. |
[14] |
J. Angulo-Pava and J.-C. Saut,
Existence of solitary waves solutions for internal waves in two-layers systems, Quart. Appl. Math., 78 (2020), 75-105.
doi: 10.1090/qam/1546. |
[15] |
C. T. Anh,
Influence of surface tension and bottom topography on internal waves, Math. Models Methods Appl. Sci., 19 (2009), 2145-2175.
doi: 10.1142/S0218202509004078. |
[16] |
T. B. Benjamin,
Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.
doi: 10.1017/S002211206700103X. |
[17] |
T. B. Benjamin, J. L. Bona and D. K. Bose,
Solitary-wave solutions of nonlinear problems, Phil. Trans. Royal Soc. London, Series A, 331 (1990), 195-244.
doi: 10.1098/rsta.1990.0065. |
[18] |
T. B. Benjamin, J. L. Bona and J. J. Mahony,
Model equations for long waves in nonlinear, dispersive media, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032. |
[19] |
D. P. Bennett, R. W. Brown, S. E. Stansfield, J. D. Stroughair and J. L. Bona,
The stability of internal solitary waves in stratified fluids, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351-379.
doi: 10.1017/S0305004100061193. |
[20] |
J. L. Bona,
Convergence of periodic wave trains in the limit of large wavelength, Appl. Sci. Res., 37 (1981), 21-30.
doi: 10.1007/BF00382614. |
[21] |
J. L. Bona, X. Carvajal, M. Panthee and M. Scialom,
Higher-order Hamiltonian model for unidirectional water waves, J. Nonlinear Sci., 28 (2018), 543-577.
doi: 10.1007/s00332-017-9417-y. |
[22] |
J. L. Bona and H. Chen,
Solitary waves in nonlinear dispersive systems, Discrete Cont. Dynamical Sys. B, 2 (2002), 313-378.
doi: 10.3934/dcdsb.2002.2.313. |
[23] |
J. L. Bona, M. Chen and J.-C. Saut,
Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.
doi: 10.1007/s00332-002-0466-4. |
[24] |
J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney,
Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation, Philos. Trans. Royal Soc. London, Series A, 351 (1995), 107-164.
doi: 10.1098/rsta.1995.0027. |
[25] |
J. L. Bona, A. Durán and D. Mitsotakis, Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. Ⅱ. Dynamics, In preparation. Google Scholar |
[26] |
J. L. Bona, D. Lannes and J.-C. Saut,
Asymptotic models for internal waves, J. Math. Pures. Appl., 89 (2008), 538-566.
doi: 10.1016/j.matpur.2008.02.003. |
[27] |
J. L. Bona and Y. A. Li,
Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430.
doi: 10.1016/S0021-7824(97)89957-6. |
[28] |
J. L. Bona and M. Scialom,
The effect of change in the nonlinearity and the dispersion relation of model equations for long waves, Canadian Appl. Math. Quart., 3 (1995), 1-41.
|
[29] |
J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta Methods and General Linear Methods, John Wiley & Sons, Ltd., Chichester, 1987. |
[30] |
R. Camassa, W. Choi, H. Michallet, P.-O. Rusas and J. K. Sveen,
On the realm of validity of strongly nonlinear asymptotic approximations for internal waves, J. Fluid Mech., 549 (2006), 1-23.
doi: 10.1017/S0022112005007226. |
[31] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and A. T. Zang, Spectral Methods in Fluid Dynamics, Springer; New York, 1985. Google Scholar |
[32] |
H. Chen,
Long-period limit of nonlinear, dispersive waves: The BBM equation, Differential Integral Eq., 19 (2006), 463-480.
|
[33] |
H. H. Chen and Y. C. Lee,
Internal-wave solitons of fluids with finite depth, Phys. Rev. Lett., 43 (1979), 264-266.
doi: 10.1103/PhysRevLett.43.264. |
[34] |
W. Choi and R. Camassa,
Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech., 313 (1996), 83-103.
doi: 10.1017/S0022112096002133. |
[35] |
W. Choi and R. Camassa,
Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396 (1999), 1-36.
doi: 10.1017/S0022112099005820. |
[36] |
W. Craig, P. Guyenne and H. Kalisch,
Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58 (2005), 1587-1641.
doi: 10.1002/cpa.20098. |
[37] |
V. A. Dougalis, A. Durán, M. A. Lopez-Marcos and D. Mitsotakis,
A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems, J. Nonlinear Sci., 17 (2007), 569-607.
doi: 10.1007/s00332-007-9004-8. |
[38] |
V. A. Dougalis, A. Durán and D. Mitsotakis, Numerical approximation of solitary waves of the Benjamin equation, Math. Comput. Simul., 127 (2016), 56–79.
doi: 10.1016/j.matcom.2012.07.008. |
[39] |
V. Duchene,
Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., 42 (2010), 2229-2260.
doi: 10.1137/090761100. |
[40] |
V. Duchene,
Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation, M2AN Math. Model. Numer. Anal., 46 (2012), 145-185.
doi: 10.1051/m2an/2011037. |
[41] |
M. Frigo and S. G. Johnson,
The design and implementation of fftw3, Proc. IEEE, 93 (2005), 216-231.
doi: 10.1109/JPROC.2004.840301. |
[42] |
P. Guyenne, D. Lannes and J.-C. Saut,
Well-posedness of the Cauchy problem for models of large amplitude internal waves, Nonlinearity, 23 (2010), 237-275.
doi: 10.1088/0951-7715/23/2/003. |
[43] |
K. R. Helfrich and W. K. Melville,
Long nonlinear internal waves, Annual Review of Fluid Mechanics, 38 (2006), 395-425.
doi: 10.1146/annurev.fluid.38.050304.092129. |
[44] |
R. I. Joseph, Solitary waves in a finite depth fluid, J. Phys. A, 10 (1977), L225–L227.
doi: 10.1088/0305-4470/10/12/002. |
[45] |
R. I. Joseph,
Comment on "internal-wave solitons of fluids with finite depth", Phys. Rev. A, 21 (1980), 691-692.
doi: 10.1103/PhysRevA.21.691. |
[46] |
H. Kalisch,
Error analysis of spectral projections of the regularized Benjamin-Ono equation, BIT, 45 (2005), 69-89.
doi: 10.1007/s10543-005-2636-x. |
[47] |
H. Kalisch and J. L. Bona,
Models for internal waves in deep water, Discrete Contin. Dynamical Syst., 6 (2000), 1-20.
doi: 10.3934/dcds.2000.6.1. |
[48] |
C. G. Koop and G. Butler,
An investigation of internal solitary waves in a two-fluid system, J. Fluid Mech., 112 (1981), 225-251.
doi: 10.1017/S0022112081000372. |
[49] |
T. I. Lakoba and J. Yang,
A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J. Comp. Phys., 226 (2007), 1668-1692.
doi: 10.1016/j.jcp.2007.06.009. |
[50] |
B. Mercier, An Introduction to the Numerical Analysis of Spectral Methods, Lectures Notes in Physics, Vol. 318, Springer-Verlag, Berlin, 1989. |
[51] |
H. Michallet and E. Barthelemy,
Experimental study of interfacial solitary waves, J. Fluid Mech., 366 (1998), 159-177.
doi: 10.1017/S002211209800127X. |
[52] |
H. Y. Nguyen and F. Dias,
A Boussinesq system for two-way propagation of interfacial waves, Physica D, 237 (2008), 2365-2389.
doi: 10.1016/j.physd.2008.02.020. |
[53] |
H. Ono,
Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.
doi: 10.1143/JPSJ.39.1082. |
[54] |
D. Pelinovsky and Y. Stepanyants,
Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42 (2004), 1110-1127.
doi: 10.1137/S0036142902414232. |
[55] |
V. Petviashvili, Equation of an extraordinary soliton, Sov. J. Plasma Phys., 2 (1976), 469-472. Google Scholar |
[56] |
M. I. Weinstein,
Existence and dynamical stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Eq., 12 (1987), 1133-1173.
doi: 10.1080/03605308708820522. |
[57] |
G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc.; Hoboken, New Jersey, 1999.
doi: 10.1002/9781118032954. |
[58] |
L. Xu,
Intermediate long wave systems for internal waves, Nonlinearity, 25 (2012), 597-640.
doi: 10.1088/0951-7715/25/3/597. |
[59] |
J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Society for Industrial and Applied Mathematics; Philadelphia, 2010.
doi: 10.1137/1.9780898719680. |
show all references
References:
[1] |
L. Abdelouhab, J. L. Bona, M. Felland and J.-C. Saut,
Nonlocal models for nonlinear dispersive waves, Physica D, 40 (1989), 360-392.
doi: 10.1016/0167-2789(89)90050-X. |
[2] |
A. A. Alazman, J. P. Albert, J. L. Bona, M. Chen and J. Wu,
Comparisons between the BBM equation and a Boussinesq system, Advances Differential Eq., 11 (2006), 121-166.
|
[3] |
J. P. Albert and J. L. Bona,
Comparisons between model equations for long waves, J. Nonlinear Sci., 1 (1991), 345-374.
doi: 10.1007/BF01238818. |
[4] |
J. P. Albert and J. L. Bona,
Total positivity and the stability of internal waves in fluids of finite depth, IMA J. Applied Math., 46 (1991), 1-19.
doi: 10.1093/imamat/46.1-2.1. |
[5] |
J. P. Albert, J. L. Bona and J.-M. Restrepo,
Solitary-wave solutions of the Benjamin equation, SIAM J. Appl. Math., 59 (1999), 2139-2161.
doi: 10.1137/S0036139997321682. |
[6] |
J. P. Albert, J. L. Bona and J.-C. Saut,
Model equations for waves in stratified fluids, Proc. Royal Soc. London, Series A, 453 (1997), 1233-1260.
doi: 10.1098/rspa.1997.0068. |
[7] |
J. P. Albert and J. F. Toland,
On the exact solutions of the intermediate long-wave equation, Differential Integral Eq., 7 (1994), 601-612.
|
[8] |
M. H. Alford et al., The formation and fate of internal waves in the South China Sea, Nature, 521 (2015), 65-69. Google Scholar |
[9] |
J. Álvarez and A. Durán,
An extended Petviashvili method for the numerical generation of traveling and localized waves, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 2272-2283.
doi: 10.1016/j.cnsns.2013.12.004. |
[10] |
J. Álvarez and A. Durán,
Petviashvili type methods for traveling wave computations: Ⅰ. Analysis of convergence, J. Comput. Appl. Math., 266 (2014), 39-51.
doi: 10.1016/j.cam.2014.01.015. |
[11] |
J. Álvarez and A. Durán,
Petviashvili type methods for traveling wave computations: Ⅱ. Acceleration with vector extrapolation methods, Math. Comput. Simul., 123 (2016), 19-36.
doi: 10.1016/j.matcom.2015.10.015. |
[12] |
D. M. Ambrose, J. L. Bona and T. Milgrom, Global solutions and ill-posedness for the Kaup system and related Boussinesq systems, Indiana U. Math. J, 68 (2019), 1173–1198.
doi: 10.1512/iumj.2019.68.7721. |
[13] |
C. J. Amick and J. F. Toland,
Uniqueness of Benjamin's solitary wave solution of the Benjamin-Ono equation, IMA J. Appl. Math., 46 (1991), 21-28.
doi: 10.1093/imamat/46.1-2.21. |
[14] |
J. Angulo-Pava and J.-C. Saut,
Existence of solitary waves solutions for internal waves in two-layers systems, Quart. Appl. Math., 78 (2020), 75-105.
doi: 10.1090/qam/1546. |
[15] |
C. T. Anh,
Influence of surface tension and bottom topography on internal waves, Math. Models Methods Appl. Sci., 19 (2009), 2145-2175.
doi: 10.1142/S0218202509004078. |
[16] |
T. B. Benjamin,
Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.
doi: 10.1017/S002211206700103X. |
[17] |
T. B. Benjamin, J. L. Bona and D. K. Bose,
Solitary-wave solutions of nonlinear problems, Phil. Trans. Royal Soc. London, Series A, 331 (1990), 195-244.
doi: 10.1098/rsta.1990.0065. |
[18] |
T. B. Benjamin, J. L. Bona and J. J. Mahony,
Model equations for long waves in nonlinear, dispersive media, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.
doi: 10.1098/rsta.1972.0032. |
[19] |
D. P. Bennett, R. W. Brown, S. E. Stansfield, J. D. Stroughair and J. L. Bona,
The stability of internal solitary waves in stratified fluids, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351-379.
doi: 10.1017/S0305004100061193. |
[20] |
J. L. Bona,
Convergence of periodic wave trains in the limit of large wavelength, Appl. Sci. Res., 37 (1981), 21-30.
doi: 10.1007/BF00382614. |
[21] |
J. L. Bona, X. Carvajal, M. Panthee and M. Scialom,
Higher-order Hamiltonian model for unidirectional water waves, J. Nonlinear Sci., 28 (2018), 543-577.
doi: 10.1007/s00332-017-9417-y. |
[22] |
J. L. Bona and H. Chen,
Solitary waves in nonlinear dispersive systems, Discrete Cont. Dynamical Sys. B, 2 (2002), 313-378.
doi: 10.3934/dcdsb.2002.2.313. |
[23] |
J. L. Bona, M. Chen and J.-C. Saut,
Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.
doi: 10.1007/s00332-002-0466-4. |
[24] |
J. L. Bona, V. A. Dougalis, O. A. Karakashian and W. R. McKinney,
Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation, Philos. Trans. Royal Soc. London, Series A, 351 (1995), 107-164.
doi: 10.1098/rsta.1995.0027. |
[25] |
J. L. Bona, A. Durán and D. Mitsotakis, Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. Ⅱ. Dynamics, In preparation. Google Scholar |
[26] |
J. L. Bona, D. Lannes and J.-C. Saut,
Asymptotic models for internal waves, J. Math. Pures. Appl., 89 (2008), 538-566.
doi: 10.1016/j.matpur.2008.02.003. |
[27] |
J. L. Bona and Y. A. Li,
Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430.
doi: 10.1016/S0021-7824(97)89957-6. |
[28] |
J. L. Bona and M. Scialom,
The effect of change in the nonlinearity and the dispersion relation of model equations for long waves, Canadian Appl. Math. Quart., 3 (1995), 1-41.
|
[29] |
J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta Methods and General Linear Methods, John Wiley & Sons, Ltd., Chichester, 1987. |
[30] |
R. Camassa, W. Choi, H. Michallet, P.-O. Rusas and J. K. Sveen,
On the realm of validity of strongly nonlinear asymptotic approximations for internal waves, J. Fluid Mech., 549 (2006), 1-23.
doi: 10.1017/S0022112005007226. |
[31] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and A. T. Zang, Spectral Methods in Fluid Dynamics, Springer; New York, 1985. Google Scholar |
[32] |
H. Chen,
Long-period limit of nonlinear, dispersive waves: The BBM equation, Differential Integral Eq., 19 (2006), 463-480.
|
[33] |
H. H. Chen and Y. C. Lee,
Internal-wave solitons of fluids with finite depth, Phys. Rev. Lett., 43 (1979), 264-266.
doi: 10.1103/PhysRevLett.43.264. |
[34] |
W. Choi and R. Camassa,
Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech., 313 (1996), 83-103.
doi: 10.1017/S0022112096002133. |
[35] |
W. Choi and R. Camassa,
Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396 (1999), 1-36.
doi: 10.1017/S0022112099005820. |
[36] |
W. Craig, P. Guyenne and H. Kalisch,
Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58 (2005), 1587-1641.
doi: 10.1002/cpa.20098. |
[37] |
V. A. Dougalis, A. Durán, M. A. Lopez-Marcos and D. Mitsotakis,
A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems, J. Nonlinear Sci., 17 (2007), 569-607.
doi: 10.1007/s00332-007-9004-8. |
[38] |
V. A. Dougalis, A. Durán and D. Mitsotakis, Numerical approximation of solitary waves of the Benjamin equation, Math. Comput. Simul., 127 (2016), 56–79.
doi: 10.1016/j.matcom.2012.07.008. |
[39] |
V. Duchene,
Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., 42 (2010), 2229-2260.
doi: 10.1137/090761100. |
[40] |
V. Duchene,
Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation, M2AN Math. Model. Numer. Anal., 46 (2012), 145-185.
doi: 10.1051/m2an/2011037. |
[41] |
M. Frigo and S. G. Johnson,
The design and implementation of fftw3, Proc. IEEE, 93 (2005), 216-231.
doi: 10.1109/JPROC.2004.840301. |
[42] |
P. Guyenne, D. Lannes and J.-C. Saut,
Well-posedness of the Cauchy problem for models of large amplitude internal waves, Nonlinearity, 23 (2010), 237-275.
doi: 10.1088/0951-7715/23/2/003. |
[43] |
K. R. Helfrich and W. K. Melville,
Long nonlinear internal waves, Annual Review of Fluid Mechanics, 38 (2006), 395-425.
doi: 10.1146/annurev.fluid.38.050304.092129. |
[44] |
R. I. Joseph, Solitary waves in a finite depth fluid, J. Phys. A, 10 (1977), L225–L227.
doi: 10.1088/0305-4470/10/12/002. |
[45] |
R. I. Joseph,
Comment on "internal-wave solitons of fluids with finite depth", Phys. Rev. A, 21 (1980), 691-692.
doi: 10.1103/PhysRevA.21.691. |
[46] |
H. Kalisch,
Error analysis of spectral projections of the regularized Benjamin-Ono equation, BIT, 45 (2005), 69-89.
doi: 10.1007/s10543-005-2636-x. |
[47] |
H. Kalisch and J. L. Bona,
Models for internal waves in deep water, Discrete Contin. Dynamical Syst., 6 (2000), 1-20.
doi: 10.3934/dcds.2000.6.1. |
[48] |
C. G. Koop and G. Butler,
An investigation of internal solitary waves in a two-fluid system, J. Fluid Mech., 112 (1981), 225-251.
doi: 10.1017/S0022112081000372. |
[49] |
T. I. Lakoba and J. Yang,
A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J. Comp. Phys., 226 (2007), 1668-1692.
doi: 10.1016/j.jcp.2007.06.009. |
[50] |
B. Mercier, An Introduction to the Numerical Analysis of Spectral Methods, Lectures Notes in Physics, Vol. 318, Springer-Verlag, Berlin, 1989. |
[51] |
H. Michallet and E. Barthelemy,
Experimental study of interfacial solitary waves, J. Fluid Mech., 366 (1998), 159-177.
doi: 10.1017/S002211209800127X. |
[52] |
H. Y. Nguyen and F. Dias,
A Boussinesq system for two-way propagation of interfacial waves, Physica D, 237 (2008), 2365-2389.
doi: 10.1016/j.physd.2008.02.020. |
[53] |
H. Ono,
Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.
doi: 10.1143/JPSJ.39.1082. |
[54] |
D. Pelinovsky and Y. Stepanyants,
Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42 (2004), 1110-1127.
doi: 10.1137/S0036142902414232. |
[55] |
V. Petviashvili, Equation of an extraordinary soliton, Sov. J. Plasma Phys., 2 (1976), 469-472. Google Scholar |
[56] |
M. I. Weinstein,
Existence and dynamical stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Eq., 12 (1987), 1133-1173.
doi: 10.1080/03605308708820522. |
[57] |
G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc.; Hoboken, New Jersey, 1999.
doi: 10.1002/9781118032954. |
[58] |
L. Xu,
Intermediate long wave systems for internal waves, Nonlinearity, 25 (2012), 597-640.
doi: 10.1088/0951-7715/25/3/597. |
[59] |
J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Society for Industrial and Applied Mathematics; Philadelphia, 2010.
doi: 10.1137/1.9780898719680. |











Classical fixed point method | Petviashvili method |
1.9999999 | 0.9999999 |
0.9999999 | 0.8192378 |
0.8192378 | 0.6840761 |
0.6840761 | 0.6220421 |
0.6220421 | 0.5686637 |
0.5686637 | 0.5454789 |
Classical fixed point method | Petviashvili method |
1.9999999 | 0.9999999 |
0.9999999 | 0.8192378 |
0.8192378 | 0.6840761 |
0.6840761 | 0.6220421 |
0.6220421 | 0.5686637 |
0.5686637 | 0.5454789 |
[1] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[2] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[3] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[4] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[5] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[6] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[7] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[8] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[9] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[10] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[11] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[12] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[13] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[14] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[15] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[16] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[17] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[18] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[19] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[20] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]