\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations

  • * Corresponding author: Jerry L. Bona

    * Corresponding author: Jerry L. Bona 
Abstract / Introduction Full Text(HTML) Figure(11) / Table(2) Related Papers Cited by
  • Considered here are systems of partial differential equations arising in internal wave theory. The systems are asymptotic models describing the two-way propagation of long-crested interfacial waves in the Benjamin-Ono and the Intermediate Long-Wave regimes. Of particular interest will be solitary-wave solutions of these systems. Several methods of numerically approximating these solitary waves are put forward and their performance compared. The output of these schemes is then used to better understand some of the fundamental properties of these solitary waves.

    The spatial structure of the systems of equations is non-local, like that of their one-dimensional, unidirectional relatives, the Benjamin-Ono and the Intermediate Long-Wave equations. As the non-local aspect is comprised of Fourier multiplier operators, this suggests the use of spectral methods for the discretization in space. Three iterative methods are proposed and implemented for approximating traveling-wave solutions. In addition to Newton-type and Petviashvili iterations, an interesting wrinkle on the usual Petviashvili method is put forward which appears to offer advantages over the other two techniques. The performance of these methods is checked in several ways, including using the approximations they generate as initial data in time-dependent codes for obtaining solutions of the Cauchy problem.

    Attention is then turned to determining speed versus amplitude relations of these families of waves and their dependence upon parameters in the models. There are also provided comparisons between the unidirectional and bidirectional solitary waves. It deserves remark that while small-amplitude solitary-wave solutions of these systems are known to exist, our results suggest the amplitude restriction in the theory is artificial.

    Mathematics Subject Classification: Primary: 76B55, 76B25; Secondary: 65N35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sketch of an ideal fluid system for internal wave propagation. The fluid layers are homogeneous with densities $ \rho_{1}<\rho_{2} $

    Figure 2.  Solitary-wave solutions of the BO system. Approximate $ \zeta $ and $ u $ profiles generated using the Petviashvili method (18) with $ \gamma = 0.8, \alpha = 1.2 $ and $ c_s = 0.57 $

    Figure 3.  Discrepancy $ |1-M_n| $ of the stabilizing factor vs. number of iterations for the BO system using the Petviashvili-type methods (18) and (20)

    Figure 4.  Logarithm of residual errors (25) vs. the number $ N_{iter} $ of iterations and vs. CPU time for the BO system and for the three iterative methods

    Figure 5.  Graph of an approximate solitary-wave solution of the ILW system. The approximate profiles $ \zeta,u $ were generated using the Petviashvili method (18) with $ \gamma = 0.8 $

    Figure 6.  Propagation of an approximate solitary-wave solution for the BO system. The profile was generated using the Petviashvili method (18) with $ c_s = 0.57 $

    Figure 7.  Solitary waves of the BO system (left) and the rBO equation (right) for various values of $ \gamma $ and $ c_s $

    Figure 8.  Peak amplitude of the computed solitary waves as a function of the speed $ c_s $ f or BO system and rBO equation for various values of $ \gamma $

    Figure 9.  Comparison of solitary-wave solutions of the BO system and the rBO equation with $ \gamma = 0.8 $

    Figure 10.  Comparison of some solitary waves of the BO system and the rBO equation with $ \gamma = 0.1 $

    Figure 11.  Convergence of the solitary waves of the ILW system to a solitary wave solution of the BO system for large values of the lower depth $ d_2 $; $ \alpha = 1.2 $, $ \gamma = 0.8 $, $ \varepsilon = \sqrt{\mu} = 0.1 $

    Table 1.  The six eigenvalues largest in magnitude of the iteration matrices evaluated at the profiles shown in Figure 2: (left) classical fixed point algorithm (17) and (right) the Petviashvili method (18)

    Classical fixed point method Petviashvili method
    1.9999999 0.9999999
    0.9999999 0.8192378
    0.8192378 0.6840761
    0.6840761 0.6220421
    0.6220421 0.5686637
    0.5686637 0.5454789
     | Show Table
    DownLoad: CSV

    Table 2.  Normalized amplitude error $ AE_n $, shape error $ SE_n $, phase error $ PE_n $ and speed error $ CE_n $ in the case of a solitary wave with $ \gamma = 0.8, \alpha = 1.2 $ and $ c_s = 0.57 $ for the BO system

    $ t^n $ $ AE_n $ $ SE_n $ $ PE_n $ $ CE_n $
    $ 10 $ $ 0.1091\times 10^{-6} $ $ 0.0768\times 10^{-6} $ $ -0.0437\times 10^{-6} $ $ -0.4905\times 10^{-8} $
    $ 20 $ $ 0.1256\times 10^{-6} $ $ 0.0871\times 10^{-6} $ $ -0.0750\times 10^{-6} $ $ -0.5884\times 10^{-8} $
    $ 30 $ $ 0.1356\times 10^{-6} $ $ 0.0932\times 10^{-6} $ $ -0.1106\times 10^{-6} $ $ -0.6482\times 10^{-8} $
    $ 40 $ $ 0.1431\times 10^{-6} $ $ 0.0974\times 10^{-6} $ $ -0.1494\times 10^{-6} $ $ -0.7026\times 10^{-8} $
    $ 50 $ $ 0.1492\times 10^{-6} $ $ 0.1007\times 10^{-6} $ $ -0.1910\times 10^{-6} $ $ -0.7536\times 10^{-8} $
    $ 60 $ $ 0.1546\times 10^{-6} $ $ 0.1035\times 10^{-6} $ $ -0.2354\times 10^{-6} $ $ -0.8017\times 10^{-8} $
    $ 70 $ $ 0.1596\times 10^{-6} $ $ 0.1059\times 10^{-6} $ $ -0.2825\times 10^{-6} $ $ -0.8461\times 10^{-8} $
    $ 80 $ $ 0.1642\times 10^{-6} $ $ 0.1081\times 10^{-6} $ $ -0.3322\times 10^{-6} $ $ -0.8982\times 10^{-8} $
    $ 90 $ $ 0.1686\times 10^{-6} $ $ 0.1101\times 10^{-6} $ $ -0.3844\times 10^{-6} $ $ -0.9366\times 10^{-8} $
    $ 100 $ $ 0.1728\times 10^{-6} $ $ 0.1121\times 10^{-6} $ $ -0.4392\times 10^{-6} $ $ -0.9815\times 10^{-8} $
     | Show Table
    DownLoad: CSV
  • [1] L. AbdelouhabJ. L. BonaM. Felland and J.-C. Saut, Nonlocal models for nonlinear dispersive waves, Physica D, 40 (1989), 360-392.  doi: 10.1016/0167-2789(89)90050-X.
    [2] A. A. AlazmanJ. P. AlbertJ. L. BonaM. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system, Advances Differential Eq., 11 (2006), 121-166. 
    [3] J. P. Albert and J. L. Bona, Comparisons between model equations for long waves, J. Nonlinear Sci., 1 (1991), 345-374.  doi: 10.1007/BF01238818.
    [4] J. P. Albert and J. L. Bona, Total positivity and the stability of internal waves in fluids of finite depth, IMA J. Applied Math., 46 (1991), 1-19.  doi: 10.1093/imamat/46.1-2.1.
    [5] J. P. AlbertJ. L. Bona and J.-M. Restrepo, Solitary-wave solutions of the Benjamin equation, SIAM J. Appl. Math., 59 (1999), 2139-2161.  doi: 10.1137/S0036139997321682.
    [6] J. P. AlbertJ. L. Bona and J.-C. Saut, Model equations for waves in stratified fluids, Proc. Royal Soc. London, Series A, 453 (1997), 1233-1260.  doi: 10.1098/rspa.1997.0068.
    [7] J. P. Albert and J. F. Toland, On the exact solutions of the intermediate long-wave equation, Differential Integral Eq., 7 (1994), 601-612. 
    [8] M. H. Alford et al., The formation and fate of internal waves in the South China Sea, Nature, 521 (2015), 65-69. 
    [9] J. Álvarez and A. Durán, An extended Petviashvili method for the numerical generation of traveling and localized waves, Comm. Nonlinear Sci. Numer. Simul., 19 (2014), 2272-2283.  doi: 10.1016/j.cnsns.2013.12.004.
    [10] J. Álvarez and A. Durán, Petviashvili type methods for traveling wave computations: Ⅰ. Analysis of convergence, J. Comput. Appl. Math., 266 (2014), 39-51.  doi: 10.1016/j.cam.2014.01.015.
    [11] J. Álvarez and A. Durán, Petviashvili type methods for traveling wave computations: Ⅱ. Acceleration with vector extrapolation methods, Math. Comput. Simul., 123 (2016), 19-36.  doi: 10.1016/j.matcom.2015.10.015.
    [12] D. M. Ambrose, J. L. Bona and T. Milgrom, Global solutions and ill-posedness for the Kaup system and related Boussinesq systems, Indiana U. Math. J, 68 (2019), 1173–1198. doi: 10.1512/iumj.2019.68.7721.
    [13] C. J. Amick and J. F. Toland, Uniqueness of Benjamin's solitary wave solution of the Benjamin-Ono equation, IMA J. Appl. Math., 46 (1991), 21-28.  doi: 10.1093/imamat/46.1-2.21.
    [14] J. Angulo-Pava and J.-C. Saut, Existence of solitary waves solutions for internal waves in two-layers systems, Quart. Appl. Math., 78 (2020), 75-105.  doi: 10.1090/qam/1546.
    [15] C. T. Anh, Influence of surface tension and bottom topography on internal waves, Math. Models Methods Appl. Sci., 19 (2009), 2145-2175.  doi: 10.1142/S0218202509004078.
    [16] T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.  doi: 10.1017/S002211206700103X.
    [17] T. B. BenjaminJ. L. Bona and D. K. Bose, Solitary-wave solutions of nonlinear problems, Phil. Trans. Royal Soc. London, Series A, 331 (1990), 195-244.  doi: 10.1098/rsta.1990.0065.
    [18] T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear, dispersive media, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.
    [19] D. P. BennettR. W. BrownS. E. StansfieldJ. D. Stroughair and J. L. Bona, The stability of internal solitary waves in stratified fluids, Math. Proc. Cambridge Philos. Soc., 94 (1983), 351-379.  doi: 10.1017/S0305004100061193.
    [20] J. L. Bona, Convergence of periodic wave trains in the limit of large wavelength, Appl. Sci. Res., 37 (1981), 21-30.  doi: 10.1007/BF00382614.
    [21] J. L. BonaX. CarvajalM. Panthee and M. Scialom, Higher-order Hamiltonian model for unidirectional water waves, J. Nonlinear Sci., 28 (2018), 543-577.  doi: 10.1007/s00332-017-9417-y.
    [22] J. L. Bona and H. Chen, Solitary waves in nonlinear dispersive systems, Discrete Cont. Dynamical Sys. B, 2 (2002), 313-378.  doi: 10.3934/dcdsb.2002.2.313.
    [23] J. L. BonaM. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. Ⅰ: Derivation and linear theory, J. Nonlinear Sci., 12 (2002), 283-318.  doi: 10.1007/s00332-002-0466-4.
    [24] J. L. BonaV. A. DougalisO. A. Karakashian and W. R. McKinney, Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation, Philos. Trans. Royal Soc. London, Series A, 351 (1995), 107-164.  doi: 10.1098/rsta.1995.0027.
    [25] J. L. Bona, A. Durán and D. Mitsotakis, Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. Ⅱ. Dynamics, In preparation.
    [26] J. L. BonaD. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures. Appl., 89 (2008), 538-566.  doi: 10.1016/j.matpur.2008.02.003.
    [27] J. L. Bona and Y. A. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430.  doi: 10.1016/S0021-7824(97)89957-6.
    [28] J. L. Bona and M. Scialom, The effect of change in the nonlinearity and the dispersion relation of model equations for long waves, Canadian Appl. Math. Quart., 3 (1995), 1-41. 
    [29] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta Methods and General Linear Methods, John Wiley & Sons, Ltd., Chichester, 1987.
    [30] R. CamassaW. ChoiH. MichalletP.-O. Rusas and J. K. Sveen, On the realm of validity of strongly nonlinear asymptotic approximations for internal waves, J. Fluid Mech., 549 (2006), 1-23.  doi: 10.1017/S0022112005007226.
    [31] C. Canuto, M. Y. Hussaini, A. Quarteroni and A. T. Zang, Spectral Methods in Fluid Dynamics, Springer; New York, 1985.
    [32] H. Chen, Long-period limit of nonlinear, dispersive waves: The BBM equation, Differential Integral Eq., 19 (2006), 463-480. 
    [33] H. H. Chen and Y. C. Lee, Internal-wave solitons of fluids with finite depth, Phys. Rev. Lett., 43 (1979), 264-266.  doi: 10.1103/PhysRevLett.43.264.
    [34] W. Choi and R. Camassa, Weakly nonlinear internal waves in a two-fluid system, J. Fluid Mech., 313 (1996), 83-103.  doi: 10.1017/S0022112096002133.
    [35] W. Choi and R. Camassa, Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396 (1999), 1-36.  doi: 10.1017/S0022112099005820.
    [36] W. CraigP. Guyenne and H. Kalisch, Hamiltonian long-wave expansions for free surfaces and interfaces, Comm. Pure Appl. Math., 58 (2005), 1587-1641.  doi: 10.1002/cpa.20098.
    [37] V. A. DougalisA. DuránM. A. Lopez-Marcos and D. Mitsotakis, A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems, J. Nonlinear Sci., 17 (2007), 569-607.  doi: 10.1007/s00332-007-9004-8.
    [38] V. A. Dougalis, A. Durán and D. Mitsotakis, Numerical approximation of solitary waves of the Benjamin equation, Math. Comput. Simul., 127 (2016), 56–79. doi: 10.1016/j.matcom.2012.07.008.
    [39] V. Duchene, Asymptotic shallow water models for internal waves in a two-fluid system with a free surface, SIAM J. Math. Anal., 42 (2010), 2229-2260.  doi: 10.1137/090761100.
    [40] V. Duchene, Boussinesq/Boussinesq systems for internal waves with a free surface, and the KdV approximation, M2AN Math. Model. Numer. Anal., 46 (2012), 145-185.  doi: 10.1051/m2an/2011037.
    [41] M. Frigo and S. G. Johnson, The design and implementation of fftw3, Proc. IEEE, 93 (2005), 216-231.  doi: 10.1109/JPROC.2004.840301.
    [42] P. GuyenneD. Lannes and J.-C. Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves, Nonlinearity, 23 (2010), 237-275.  doi: 10.1088/0951-7715/23/2/003.
    [43] K. R. Helfrich and W. K. Melville, Long nonlinear internal waves, Annual Review of Fluid Mechanics, 38 (2006), 395-425.  doi: 10.1146/annurev.fluid.38.050304.092129.
    [44] R. I. Joseph, Solitary waves in a finite depth fluid, J. Phys. A, 10 (1977), L225–L227. doi: 10.1088/0305-4470/10/12/002.
    [45] R. I. Joseph, Comment on "internal-wave solitons of fluids with finite depth", Phys. Rev. A, 21 (1980), 691-692.  doi: 10.1103/PhysRevA.21.691.
    [46] H. Kalisch, Error analysis of spectral projections of the regularized Benjamin-Ono equation, BIT, 45 (2005), 69-89.  doi: 10.1007/s10543-005-2636-x.
    [47] H. Kalisch and J. L. Bona, Models for internal waves in deep water, Discrete Contin. Dynamical Syst., 6 (2000), 1-20.  doi: 10.3934/dcds.2000.6.1.
    [48] C. G. Koop and G. Butler, An investigation of internal solitary waves in a two-fluid system, J. Fluid Mech., 112 (1981), 225-251.  doi: 10.1017/S0022112081000372.
    [49] T. I. Lakoba and J. Yang, A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J. Comp. Phys., 226 (2007), 1668-1692.  doi: 10.1016/j.jcp.2007.06.009.
    [50] B. Mercier, An Introduction to the Numerical Analysis of Spectral Methods, Lectures Notes in Physics, Vol. 318, Springer-Verlag, Berlin, 1989.
    [51] H. Michallet and E. Barthelemy, Experimental study of interfacial solitary waves, J. Fluid Mech., 366 (1998), 159-177.  doi: 10.1017/S002211209800127X.
    [52] H. Y. Nguyen and F. Dias, A Boussinesq system for two-way propagation of interfacial waves, Physica D, 237 (2008), 2365-2389.  doi: 10.1016/j.physd.2008.02.020.
    [53] H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.  doi: 10.1143/JPSJ.39.1082.
    [54] D. Pelinovsky and Y. Stepanyants, Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations, SIAM J. Numer. Anal., 42 (2004), 1110-1127.  doi: 10.1137/S0036142902414232.
    [55] V. Petviashvili, Equation of an extraordinary soliton, Sov. J. Plasma Phys., 2 (1976), 469-472. 
    [56] M. I. Weinstein, Existence and dynamical stability of solitary wave solutions of equations arising in long wave propagation, Comm. Partial Differential Eq., 12 (1987), 1133-1173.  doi: 10.1080/03605308708820522.
    [57] G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons Inc.; Hoboken, New Jersey, 1999. doi: 10.1002/9781118032954.
    [58] L. Xu, Intermediate long wave systems for internal waves, Nonlinearity, 25 (2012), 597-640.  doi: 10.1088/0951-7715/25/3/597.
    [59] J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Society for Industrial and Applied Mathematics; Philadelphia, 2010. doi: 10.1137/1.9780898719680.
  • 加载中

Figures(11)

Tables(2)

SHARE

Article Metrics

HTML views(2268) PDF downloads(515) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return